
Generating Random Structurally Rich
Algebraic Data Type Values

Agustı́n Mista
Chalmers University of Technology

Gothenburg, Sweden
mista@chalmers.se

Alejandro Russo
Chalmers University of Technology

Gothenburg, Sweden
russo@chalmers.se

Abstract—Automatic generation of random values described by
algebraic data types (ADTs) is often a hard task. State-of-the-art
random testing tools can automatically synthesize random data
generators based on ADTs definitions. In that manner, generated
values comply with the structure described by ADTs, something
that proves useful when testing software which expects complex
inputs. However, it sometimes becomes necessary to generate
structural richer ADTs values in order to test deeper software
layers. In this work we propose to leverage static information
found in the codebase as a manner to improve the generation
process. Namely, our generators are capable of considering how
programs branch on input data as well as how ADTs values
are built via interfaces. We implement a tool, responsible for
synthesizing generators for ADTs values while providing compile-
time guarantees about their distributions. Using compile-time
predictions, we provide a heuristic that tries to adjust the
distribution of generators to what developers might want. We
report on preliminary experiments where our approach shows
encouraging results.

Index Terms—random testing, algebraic data types, Haskell

I. INTRODUCTION

Random testing is a promising approach for finding bugs
[1]–[3]. QuickCheck [4] is the dominant tool of this sort used
by the Haskell community. It requires developers to specify (i)
testing properties describing programs’ expected behavior and
(ii) random data generators based on the types of the expected
inputs (e.g., integers, strings, etc.). QuickCheck then generates
random test cases and reports violating testing properties.

QuickCheck comes equipped with random generators for
built-in types, while it requires to manually write generators
for user-defined ADTs. Recently, there has been a proliferation
of tools to automatically derive QuickCheck generators for
ADTs [5]–[9]. The main difference about these tools lies on the
guarantees provided to ensure the termination of the generation
process and the distribution of random values. Despite their
differences, these tools guarantee that generated values are well-
typed. In other words, generated values follow the structure
described by ADT definitions.

Well-typed ADT values are specially useful when testing
programs which expect highly structured inputs like compilers
[10]–[12]. Generating ADT values also proves fruitful when
looking for vulnerabilities in combination with fuzzers [8],
[13]. Despite these success stories, ADT type-definitions do
not often capture all the invariants expected from the data that
they are intended to model. As a result, even if random values

are well-typed, they might not be built with enough structure
to penetrate into deep software layers.

In this work, we identify two different sources of structural
information that can be statically exploited to improve the
generation process of ADT values (Section III). Then, we
show how to capture this information into our (automatically)
derived random generators. More specifically, we propose
a generation process that is capable of considering how
programs branch on input ADTs values as well as how they get
manipulated by abstract interfaces (Section IV). Furthermore,
we show how to predict the expected distribution of the ADT
constructors, values fitting certain branching patterns, and
calls to interfaces that our random generators produce. For
that, we extend some recent results on applying branching
processes [14]—a simple stochastic model conceived to study
population growth (Section V). We implement our ideas as an
extension of the already existing derivation tool called
[9]. We call our extension as 1 to make it easy the
distinction for the reader. is capable of automatically
synthesizing QuickCheck generators which produce rich ADT
values, where the distributions of random values can be adjusted
at compile-time to what developers might want. Finally, we
provide empirical evaluations showing that including static
information from the user codebase improves the code coverage
of two external applications when tested using random values
generated following our ideas (Section VI).

We remark that, although this work focuses on Haskell
algebraic data types, this technique is general enough to be
applied to most programming languages.

II. BACKGROUND

In this section, we briefly introduce the common approach
for automatically deriving random data generators for ADTs in
QuickCheck. To exemplify this, and for illustrative purposes,
let us consider the following ADT definition to encode simple
Html pages:

data Html = Text String
| Single String
| Tag String Html
| Join Html Html

1 is available at http://github.com/OctopiChalmers/dragen2

http://github.com/OctopiChalmers/dragen2

The type Html allows to build pages via four possible
constructions: Text—which represents plain text values—,
Single and Tag—which represent singular and paired HTML
tags, respectively—, and Join—which concatenates two HTML
pages one after another. In Haskell, Text, Single, Tag, and
Join are known as data constructors (or constructors for short)
and are used to distinguish which variant of the ADT we are
constructing. Each data constructor is defined as a product of
zero or more types known as fields. For instance, Text has a
field of type String, whereas Join has two recursive fields of
type Html. In general, we will say that a data constructor with
no recursive fields is terminal, and non-terminal or recursive if
it has at least one field of such nature. With this representation,
the example page <html>hello<hr>bye</html> can be
encoded as:

Tag "html" (Join (Join
(Text "hello") (Single "hr")) (Text "bye"))

A. Type-driven generation of random values
In order to generate random ADTs values, most approaches

require users to provide a random data generator for each
ADT definition. This is a cumbersome and error prone task
that usually follows closely the structure of the ADTs. For
instance, consider the following definition of a QuickCheck
random generator for the type Html:

genHtml = sized (λsize→
if size == 0
then frequency
[(2,Text 〈$〉 genString)
, (1,Single 〈$〉 genString)]
else frequency
[(2,Text 〈$〉 genString)
, (1,Single 〈$〉 genString)
, (4,Tag 〈$〉 genString 〈∗〉 smaller genHtml)
, (3, Join 〈$〉 smaller genHtml 〈∗〉 smaller genHtml)])

We use the Haskell syntax [] and (,) for denoting lists
and pairs of elements, respectively (e.g., [(1, 2), (3, 4)] is a
list of pairs of numbers.) The random generator genHtml is
defined using QuickCheck’s function sized to parameterize the
generation process up to an external natural number known
as the generation size—captured in the code with variable
size. This parameter is chosen by the user, and it is used to
limit the maximum amount of recursive calls that this random
generator can perform and thus ensuring the termination of
the generation process. When called with a positive generation
size, this generator can pick to generate among any Html data
constructor with an explicitly generation frequency that can
be chosen by the user—in this example, 2, 1, 4 and 3 for
Text, Single, Tag, and Join, respectively. When it picks to
generate a Text or a Single data constructor, it also generates a
random String value using the standard QuickCheck generator
genString.2 On the other hand, when it picks to generate a

2 The operators 〈$〉 and 〈∗〉 are used in Haskell to combine values obtained
from calling random generators and they are not particularly relevant for the
point being made in this work.

Join constructor, it also generates two independent random
sub-expressions recursively, decreasing the generation size by a
unit on each recursive invocation (smaller genHtml). The case
of random generation of Tag constructors follows analogously.
This random process keeps calling itself recursively until the
generation size reaches zero, where the generator is constrained
to pick among terminal data constructors, being Text and
Single the only possible choices in our particular case.

The previous definition is rather mechanical, except per-
haps for the chosen generation frequencies. [9] is
a tool conceived to mitigate the problem of finding the
appropriated generation frequencies. It uses the theory of
branching processes [14] to model and predict analytically the
expected number of generated data constructors. This prediction
mechanism is used to feedback a simulation-based optimization
process that adjusts the generation frequency of each data
constructor in order to obtain a particular distribution of values
that can be specified by the user—thus providing a flexible
testing environment while still being mostly automated.

As many other tools for automatic derivation of generators
(e.g., [5]–[7], [13]), synthesizes random generators
similar to the one shown before, where the generation process
is limited to pick a single data constructor at the time
and then recursively generate each required sub-expression
independently. In practice, this procedure is often too generic
to generate random data with enough structural complexity
required for testing certain applications.

III. SOURCES OF STRUCTURAL INFORMATION

In this section, we describe the motivation for considering
two additional sources of structural information which lead
us to obtain better random data generators. We proceed to
exemplify the need to consider such sources with examples.

A. Branching on input data

To exemplify the first source of structural information,
consider that we want to use randomly generated Html values
to test a function simplify :: Html → Html. In Haskell, the
notation f ::T means that program f has type T. In our example,
function simplify takes an Html as an input and produces
an Html value as an output—thus its type Html → Html.
Intuitively, the purpose of this function is to assemble sequences
of Text constructors into a single big one. More specifically,
the code of simplify is as follows:

simplify :: Html→ Html
simplify (Join (Text t1) (Text t2))

= Text (concat t1 t2)
simplify (Join (Join (Text t1) x) y)

= simplify (Join (Text t1) (simplify (Join x y)))
simplify (Join x y) = Join (simplify x) (simplify y)
simplify (Tag t x) = Tag t (simplify x)
simplify x = x

Function concat just concatenates two strings. The body of
simplify is described using pattern matching over possible
kinds of Html values. Pattern matching allows to define

functions idiomatically by defining different function clauses for
each input pattern we are interested in. In other words, pattern
matching is a mechanism that functions have to branch on input
arguments. In the code above, we can see that simplify patterns
match against sequences of Text constructors combined by
a Join constructor—see first and second clauses. Generally
speaking, patterns can be defined to match specific constructors,
literal values or variable sub-expressions (like x in the last
clause of simplify). Patterns can also be nested in order to
match very specific values.

Ideally, we would like to put approximately the same amount
of effort into testing each clause of the function simplify.
However, each data constructor is generated independently by
those generators automatically derived by just considering ADT
definitions. Observe that the probability of generating a value
satisfying a nested pattern (like Join (Text t1) (Text t2))
decreases multiplicatively with the number of constructors
we simultaneously pattern against. As an evidence of that, in
our tests, we found at the first two clauses of simplify get
exercised only approximately between 1.5% and 6% of the time
when using the state-of-the-art tools for automatically deriving
QuickCheck generators MegaDeTH [13] and [9]. Most
of the generated values were exercising the simplest clauses
of our function, i.e, simplify (Join x y), simplify (Tag t x),
and simplify x.

Although the previous example might seem rather simple,
branching against specific patterns of the input data is not an
uncommon task. In that light, and in order to obtain interesting
test cases, it is desirable to conceive generators able to produce
random values capable of exercising patterns with certain
frequency—Section IV shows how to do so.

B. Abstract interfaces

A common choice when implementing ADTs is to trans-
fer the responsibility of preserving structural invariants
to the interfaces that manipulate values of such types.
To illustrate this point, let us consider three new primi-
tives responsible to handle Html data as shown in Fig 1.

hr :: Html
hr = Single "hr"

div :: Html→ Html
div x = Tag "div" x

bold :: Html→ Html
bold x = Tag "b" x

Fig. 1: Abstract interface of
the type Html.

These functions encode addi-
tional information about the
structure of Html values in
the form of specific HTML
tags. Primitive hr represents
the tag <hr> used to sep-
arate content in an HTML
page. Function div and bold
place an Html value within
the tags div and b in or-
der to introduce divisions and
activate bold fonts, respectively. For instance, the page
<html>hello<hr>bye</html> can be en-
coded as:

Tag "html" (Join (Join
(bold (Text "hello")) hr) (Text "bye"))

Observe that, instead of including a new data constructor
for each possible HTML tag in the Html definition (recall
Section II), we defined a minimal general representation with
a set of high-level primitives to build valid Html tags. This
programming pattern is often found in a variety of Haskell
libraries. As a consequence of this practice, generators derived
by only looking into ADT definitions often fail to synthesize
useful random values, e.g., random HTML pages with valid
tags. After all, most of the valid structure of values has been
encoded into the primitives of the ADT abstract interface.
When considering the generator described in Section II, the
chances of generating a Tag value representing a commonly
used HTML tag such as div or b are extremely low.

So far, we have introduced two scenarios where derivation
approaches based only on ADT definitions are unable to
capture all the available structural information from the user
codebase. Fortunately, this information can be automatically
exploited and used to generate interesting and more structured
random values. The next section introduces a model capable of
encoding structural information presented in this section into
our automatically derived random generators in a modular and
flexible way.

IV. CAPTURING ADTS STRUCTURE

In this section, we show how to augment the automatic
process of deriving random data generators with the structural
information expressed by pattern matchings and abstract
interfaces. The key idea of this work is to represent the different
sources in an homogeneous way.

Figure 2 shows the workflow of our approach for the Html
ADT. Based on the codebase, the user of specifies:
(i) the ADT definition to consider (noted as HtmlADT), (ii)
its patterns of interest (noted HtmlPatterns), and (iii) the
primitives from abstract interfaces to involve in the generation
process (noted as HtmlInterface). Our tool then automatically
derives generators for each source of structural information.
These generators produce random partial ADT values in a
way that it is easier to combine them in order to create
structurally richer ones. For instance, the generator obtained
from HtmlADT only generates constructors of the ADT
but leaves the generation at the recursive fields incomplete,
e.g., it generates values of the form (Text "xA2sx"),
(Single "xj32da"), (Tag "divx234jx" •) and (Join • •),
where • is a placeholder denoting a “yet-to-complete” value.
Similarly, the generator obtained from HtmlPatterns gener-
ates values satisfying the expected patterns where recursive
fields are also left uncompleted, e.g., it generates values
of the form (Join (Text "xxa34") (Text "yxa123"))
and (Join (Join (Text "xd32sa") •) •). Finally, the
generator derived from HtmlInterface generates calls to the
interface’s primitives, where each argument of type Html is
left uncompleted, e.g., (div •) and (bold •).

Observe that partial ADT values can be combined eas-
ily and the result is still a well-formed value of type
Html. For instance, if we want to combine the following
random generated ADT value (Text "xx34s"), pattern

module M

data Html = ...

div :: Html→ Html

bold :: Html→ Html
hr :: Html

Html generation
description

HtmlADT

HtmlPatterns

HtmlInterface

⊕

⊕

Generator

⊕

⊕

Html
test cases

simplify (...) = ...

simplify (...) = ...

Structure
specification

Generator
derivation

Random
generation

User desired
distribution

Fig. 2: Deriving a generator for the ADT Html with the structural information found in module M.

(Join (Join (Text "xd32sa") •), and interface call (div •),
we can obtain the following well-typed Html value:

Join (Join (Text "xd32sa") (div (Text "xx34s"))

Finally, our tool puts all these three generators together into
one that combines partial ADT values into fully formed ones.
Importantly, the user can specify the desire distribution of the
expected number of constructors, pattern matching values, and
interface calls that the generator will produce. All in all, our
approach offers the following advantages over usual derivation
of random generators based only on ADT definitions:

I Composability: our tool can combine different partial ADT
values arising from different structural information sources
depending on what property or sub-system becomes necessary
to test using randomly generated values.
I Extensibility: the developer can specify new sources of
structural information and combine them with the existing
ones simply by adding them to the existing specification of
the target ADT.
I Predictability: the tool is capable of synthesizing genera-
tors with adjustable distributions based on developers’ demands.
For instance, a uniform distribution of pattern matching values,
or a distribution where some constructors are generated twice
as often as others. We explain the prediction of distributions
in the next section.

We remark that, for space reasons, we were only able to
introduce the specification of a rather simple target ADT like
Html. In practice, this reasoning can be extended to mutually
recursive and parametric ADT definitions as well.

V. PREDICTING DISTRIBUTIONS

Characterizing the distribution of values of an arbitrary
random generator is a hard task. It requires modeling every
random choice that a generator could possibly make to generate
a value. In a recent work [9], we have shown that it is
possible to analytically predict the average distribution of
data constructors produced by random generators automatically
derived considering only ADT definitions—like the one pre-
sented on Section II. For this purpose, we found that random
generation of ADT values can be characterized using the theory
of branching processes [14]. This probabilistic theory was
originally conceived to predict the growth and extinction of
royal family trees the Victorian Era, later being applied to a
wide variety of research areas. In this work, we adapt this
model to predict the average distribution of values of random

generators derived considering structural information coming
from functions’ pattern matchings and abstract interfaces.

Essentially, a branching process is a special kind of Markov
process that models the evolution of a population of individ-
uals of different kinds across discrete time steps known as
generations. Each kind of individual is expected to produce
an average number of offspring of (possibly) different kinds
from one generation to the next one. Mista el at. [9] show that
branching processes can be adapted to predict the generation
of ADT values by simply considering each data constructor
as a kind of its own. In fact, any ADT value can be seen as a
tree where each node represents a root data constructor and
has its sub-expressions as sub-trees—hence note the similarity
with family trees. In this light, each tree level of a random
value can be seen as a generation of individuals in this model.

We characterize the numbers of constructors that a random
generator produces in the n-th generation as a vector Gn, a
vector that groups the number of constructors of each kind
produced in that generation—in our Html example, this vector
has four components, i.e., one for each constructor. From
branching processes theory, the following equation captures
the expected distribution of constructors at the generation n,
noted E[Gn], as follows:

E[Gn]
T = E[G0]

T ·Mn (1)

Vector E[G0] represents the initial distribution of constructors
that our generator produces, which simply consists of the
generation probability of each one. The interesting aspect of
the prediction mechanism is encoded in the matrix M , known
as a the mean matrix of this stochastic process. M is a squared
matrix with as rows and columns as different data constructors
involved in the generation process. Each element Mi,j of this
matrix encodes the average number of data constructors of
kind j that gets generated in a given generation, provided that
we generated a constructor of kind i at the previous one. In
this sense, this matrix encodes the “branching” behavior of
our random generation from one generation to the next one.
Each element of the matrix can be automatically calculated by
exploiting ADT definitions, as well as the individual probability
of generating each constructor. For instance, the average number
of Text data constructors that we will generate provided that
we generated a Join constructor on the previous level results:

MJoin,Text = 2 · pText
where 2 is the number of holes present when generating a
partial ADT value Join (i.e., Join • •) and pText is the

probability of individually generating the constructor Text.
This reasoning can be used to build the rest of the mean matrix
analogously.

A. Extending predictions for structural information

In this work, we show how to naturally fit structural infor-
mation beyond ADT definitions into the prediction mechanism
of branching processes. Our realization is that it suffices to
consider each different pattern matching and function call as a
kind of individual on its own. In that manner, we can extend our
mean matrix M adding a row and a column for each different
pattern matching and function call as shown in Figure 3.

�

C1 · · · Ci P1 · · · Pj F1 · · · Fk

C1
...
Ci

P1
...
Pj

F1
...
Fk

Fig. 3: Mean matrix M including
pattern matching and function
calls information.

Symbol C1· · ·Ci denotes
constructors, P1· · ·Pj

pattern matchings, and
F1· · ·Fk function calls.
The light-red colored
matrix is what we had
before, whereas the
light-blue colored cells
are new—we encourage
readers to obtain a colored
copy of this work.

The new cells are filled
as before: we need to con-
sider the amount of holes
when generating partial pattern matching values and function
calls as well as their individual probabilities. For instance, if
we consider Pj as the second pattern of function simplify and
F1 as function div, then the marked cell above has the value
2 · pdiv, i.e., the amount of holes in the partially generated
pattern (Join (Join (Text s) •) •), where s is some random
string, times the probability to generate a call to function div.
The rest of this matrix can be computed analogously.

As another contribution, we found that the whole prediction
process can be factored in terms of two vectors β and P , such
that β represents the number of holes in each partial ADT value
that we generate, whereas P simply represents the probability
of generating that partial ADT value. Then, the equation (1)
can be rewritten as:

E[Gn]
T = βT · (β · PT)n

For instance, β and P for our generation specification of
HTML values are as shown in Figure 4. We note simplify#1
and simplify#2 to the patterns occurring in the first and second
clauses of simplify, respectively.

Note that by varying the shape of the vector P we can tune
the distribution of our random generator in a way that can
be always characterized and predicted. follows a
similar approach as and uses an heuristic to tune the
generation probabilities of each source of structural information.
This is done by running a simulation-based optimization
process at compile-time. This process is parameterized by the
desired distribution of values set by the user. In this manner,
developers can specify, for instance, a uniform distribution of
data constructors, pattern matching values and function calls or,

β =

0
0
1
2
0
2
0
1
1

Text

Single

Tag

Join

simplify#1

simplify#2

hr

div

bold

P =

pText
pSingle
pTag
pJoin

psimplify#1

psimplify#2

phr
pdiv
pbold

Fig. 4: Prediction vectors of our Html generation specification.

alternatively, a distribution of values with some constructions
appearing in a different proportion as others, e.g., two times
more functions calls to div than Join constructors.

B. Overall prediction
It is possible to provide an overall prediction of the expected

number of constructors when restricting the generation process
to only bare data constructors and pattern matching values. To
achieve that, we should stop considering pattern matching
values as atomic constructions and start seeing them as
compositions of several data constructors. In that manner, it is
possible to obtain the expected total number of generated data
constructors that our generators will produce—regardless if
they are generated on their own, or as part of a pattern matching
value. We note this number as E↓[] and, to calculate it, we
only need to add the expected number of bare constructors that
are included within each pattern matching. For instance, we can
calculate the total expected number of constructors Text and
Join that we will generate by simply expanding the expected
number of generated pattern matching values simplify#1 and
simplify#2 into their corresponding data constructors:

E↓[Text]= E [Text] + 2 · E[simplify#1] + 1 · E[simplify#2]

E↓[Join] = E [Join] + 1 · E[simplify#1] + 2 · E[simplify#2]

Observe that each time we generate a value satisfying the first
pattern matching of the function simplify, we add two Text
and one Join data constructors to our random value. The case
of the second pattern matching of simplify follows analogously.
Note that the overall prediction cannot be applied if we also
generate random values containing function calls, as we cannot
predict the output of an arbitrary function.

VI. CASE STUDIES

This section describes two case studies showing that consid-
ering additional structural information when deriving generators
can consistently produce better testing results in terms of code
coverage. Instead of restricting our scope to Haskell, in this
work we follow a broader evaluation approach taken previously
to compare state-of-the-art techniques to derive random data
generators based on ADT definitions [8], [9].

We evaluate how including additional structural information
when generating a set of random test cases (often referred as a
corpus) affects the code coverage obtained when testing a given
target program. For that, we considered two external programs
which expect highly structured inputs, namely GNU CLISP 3—
the GNU Common Lisp compiler, and HTML Tidy 4—a well

3 https://www.gnu.org/software/gcl/ 4 http://www.html-tidy.org

https://www.gnu.org/software/gcl/
http://www.html-tidy.org

known HTML refactoring and correction utility. We remark
that these applications are not written in Haskell. However,
there exist Haskell libraries defining ADTs encoding their
input structure, i.e., Lisp and HTML values respectively. These
libraries are: hs-zuramaru5, implementing an embedded Lisp
interpreter for a small subset of this programming language,
and html6, defining a combinator library for constructing HTML
values. These libraries also come with serialization functions
to map Haskell values into corresponding test case files.

We firstly compiled instrumented versions of the target
programs in a way that they also return the execution path
followed in the source code every time we run them with a given
input test case. This let us distinguish the amount of different
execution paths that a randomly generated corpus can trigger.
We then used the ADTs defined on the chosen libraries to derive
random generators using and , including
structural information extracted from the library’s codebase in
the case of the latter. Then, we proceeded to evaluate the code
coverage triggered by independent, randomly generated corpora
of different sizes varying from 100 to 1000 test cases each.
In order to remove any external bias, we derived generators
optimized to follow a uniform distribution of constructors (and
pattern matchings or function calls in the case), and
carefully adjusted their generation sizes to match the average
test case size in bytes. This way, any noticeable difference in
the code coverage can be attributed to the presence (or lack
thereof) structural information when generating the test cases.
Additionally, to achieve statistical significance we repeated
each experiment 30 times with independently generated sets
of random test cases.

Figure 5 illustrates the mean number of different execution
paths triggered for different combinations of corpus size and
derivation tool, including error bars indicating the standard
error of the mean on each case. We proceed to describe each
case study and our findings in detail as follows.

A. Branching on input data
In this first case study we wanted to evaluate the observed

code coverage differences when considering structural infor-
mation present on functions pattern matchings.

Our chosen library encodes Lisp S-expressions essentially
as lists of symbols, represented as plain strings; and literal
values like booleans or integers. In order to interpret Lisp
programs, this unified representation of data and code requires
this library to pattern match against common patterns like
let-bindings, if-then-else expressions and arithmetic operators
among others. In particular, each one of these patterns match a
against special symbol of the Lisp syntax like "let", "if"
or "+"; and their corresponding sub-expressions. We extracted
this structural information and included it into the generation
specification of our random Lisp values—which were generated
by randomly picking from a total of 6 data constructors and 8
different pattern matchings. By doing this, we obtained a code
coverage improvement of approximately 4% using

5 http://hackage.haskell.org/package/zuramaru
6 http://hackage.haskell.org/package/html

with respect to the one obtained with (see Figure 5
(a)). While it seems an small improvement, we argue that an
improvement of 4% is not negligible considering (a) the little
effort that took us to specify the pattern matchings and (b) that
we are testing a full-fledged compiler.

B. Abstract interfaces

For our second case study, we wanted to evaluate how
including structural information coming from abstract interfaces
when generating random HTML values might improve the
testing performance.

The library we used for this purpose represents HTML values
very much in the same way as we exemplify in Section II, i.e.,
defining a small set of general constructions representing plain
text and tags—although this library also supports HTML tag
attributes as well. Then, this representation is extended with a
large abstract interface consisting of combinators representing
common HTML tags and tag attributes—equivalent to the
combinators div, bold and hr illustrated in Section III.

In this case study we included the structural information
present on the abstract interface of this library into the
generation specification of random HTML values, resulting
in a generation process that randomly picked among 4 data
constructors and 163 abstract functions. With this large amount
of additional structural information, we observed an increase
of up to 83% in the code coverage obtained with
with respect to the one observed with (see Figure
5 (b)). A manual inspection of the corpora generated with
each tool revealed us that, in general terms, the test cases
generated with rarely represent syntactically correct
HTML values, consisting to a large extent of random strings
within and between HTML tag delimiters ("<", ">" and
"/>"). On the other hand, test cases generated with
encode much more interesting structural information, being
mostly syntactically correct. We found that, in many cases, the
test cases generated with were parsed, analyzed and
reported as valid HTML values by the target application.

With these results we are confident that including the
structural information present on the user codebase improves
the overall testing performance.

VII. RELATED WORK

Boltzmann models [15] are a general approach to randomly
generating combinatorial structures such as trees and graphs,
closed simply-typed lambda terms, etc. A random generator
built around such models uniformly generates values of a target
size with a certain size tolerance. However, it has been argued
that this approach has theoretical and practical limitations
in the context of software testing [16]. In a recent work,
Bendkowski et al. provides a framework called boltzmann-
brain to specify and synthesize standalone Haskell random
generators based on Boltzmann models [17]. This framework
mixes parameter tuning and rejection of samples of unwanted
sizes to approximate the desired distribution of values according
to user demands. The overall discard ratio then depends on
how constrained the desired sizes of values are. On the other

http://hackage.haskell.org/package/zuramaru
http://hackage.haskell.org/package/html

200 400 600 800 1,000
45

50

55

60

Corpus size

E
xe

cu
tio

n
pa

th
s

(×
1
0
00

) (a) GNU CLISP 2.49

200 400 600 800 1,000
5

10

15

20

25

Corpus size

(b) HTML Tidy 5.7.20

Fig. 5: Path coverage comparison between () and ().

hand, our work is focused on approximating the desired
distribution as much as possible via parameter optimization,
without discarding any generated value at runtime. Although
promising, we found difficulties to compare both approaches
in practice due that boltzmann-brain is considered a conceptual
standalone utility that produces self-contained samplers. In this
light, data specifications have to be manually written using a
special syntax, and cannot include Haskell ground types like
String or Int, difficulting the integration of this tool to existing
Haskell codebases like the ones we consider in this work.

From the practical point of view, Feldt and Poulding propose
GödelTest [16], a search-based framework for generating biased
data. Similar to our approach, GödelTest works by optimizing
the parameters governing the desired biases on the generated
data. However, the optimization mechanism uses meta-heuristic
search to find the best parameters at runtime. on the
other hand implements an analytic and composable prediction
mechanism that is only used at compile time to optimize the
generation parameters, thus avoiding performing any kind of
runtime reinforcement.

Directed Automated Random Testing (DART) is a technique
that combines random testing with symbolic execution for C
programs [18]. It requires instrumenting the target programs
in order to introduce testing assertions and obtain feedback
from previous testing executions, which is used to explore
new paths in the source code. This technique has been shown
to be remarkably useful, although it forces a strong coupling
between the testing suite and the target code. Our tool intends
to provide better random generation of values following an
undirected fashion, without having to instrument the target
code, but still extracting useful structural information from it.

VIII. FINAL REMARKS

We extended the standard approach for automatically de-
riving random generators in Haskell. Our generators are
capable of producing complex and interesting random values
by exploiting static structural information found in the user
codebase. Based on the theory of branching processes, we
adapt our previous prediction mechanism to characterize the
distribution of random values representing the different sources
of structural information that our generators might produce.
This predictions let us optimize the generation parameters in
compile time, resulting in an improved testing performance
according to our experiments.

Acknoledgements This work was funded by the Swedish
Foundation for Strategic Research (SSF) under the project
Octopi (Ref. RIT17-0023) and WebSec (Ref. RIT17-0011) as
well as the Swedish research agency Vetenskapsrådet.

REFERENCES

[1] J. Hughes, U. Norell, N. Smallbone, and T. Arts, “Find more bugs with
QuickCheck!” in The IEEE/ACM International Workshop on Automation
of Software Test (AST), 2016.

[2] J. Hughes, C. P. B, T. Arts, and U. Norell, “Mysteries of DropBox:
Property-based testing of a distributed synchronization service,” in Proc.
of the Int. Conf. on Software Testing, Verification and Validation, 2016.

[3] T. Arts, J. Hughes, U. Norell, and H. Svensson, “Testing AUTOSAR
software with QuickCheck,” in In Proc. of IEEE International Conference
on Software Testing, Verification and Validation, ICST Workshops, 2015.

[4] K. Claessen and J. Hughes, “QuickCheck: A lightweight tool for random
testing of Haskell programs,” in Proc. of the ACM SIGPLAN International
Conference on Functional Programming (ICFP), 2000.

[5] N. Mitchell, “Deriving generic functions by example,” in Proc. of the
1st York Doctoral Syposium. Tech. Report YCS-2007-421, Department
of Computer Science, University of York, UK, 2007, pp. 55–62.

[6] C. Runciman, M. Naylor, and F. Lindblad, “Smallcheck and Lazy
Smallcheck: automatic exhaustive testing for small values,” in Proc.
of the ACM SIGPLAN Symposium on Haskell, 2008.

[7] J. Duregård, P. Jansson, and M. Wang, “Feat: Functional enumeration of
algebraic types,” in Proc. of the ACM SIGPLAN Int. Symp. on Haskell,
2012.

[8] G. Grieco, M. Ceresa, A. Mista, and P. Buiras, “QuickFuzz testing for
fun and profit,” Journal of Systems and Software, vol. 134, 2017.

[9] A. Mista, A. Russo, and J. Hughes, “Branching processes for quickcheck
generators,” in Proc. of the ACM SIGPLAN Int. Symp. on Haskell, 2018.

[10] M. Pałka, K. Claessen, A. Russo, and J. Hughes, “Testing and optimising
compiler by generating random lambda terms,” in The IEEE/ACM
International Workshop on Automation of Software Test (AST), 2011.

[11] J. Midtgaard, M. N. Justesen, P. Kasting, F. Nielson, and H. R. Nielson,
“Effect-driven QuickChecking of compilers,” In Proceedings of the ACM
on Programming Languages, Volume 1, no. ICFP, 2017.

[12] C. Klein and R. B. Findler, “Randomized testing in PLT Redex,” in ACM
SIGPLAN Workshop on Scheme and Functional Programming, 2009.

[13] G. Grieco, M. Ceresa, and P. Buiras, “QuickFuzz: An automatic random
fuzzer for common file formats,” in Proc. of the ACM SIGPLAN
International Symposium on Haskell, 2016.

[14] H. W. Watson and F. Galton, “On the probability of the extinction of
families,” The Journal of the Anthropological Institute of Great Britain
and Ireland, 1875.

[15] P. Duchon, P. Flajolet, G. Louchard, and G. Schaeffer, “Boltzmann
samplers for the random generation of combinatorial structures,” Combi-
natorics, Probability and Computing., vol. 13, 2004.

[16] R. Feldt and S. Poulding, “Finding test data with specific properties
via metaheuristic search,” in Proc. of International Symp. on Software
Reliability Engineering (ISSRE). IEEE, 2013.

[17] M. Bendkowski, O. Bodini, and S. Dovgal, “Polynomial tuning of
multiparametric combinatorial samplers,” in Proc. of the Fifteenth
Workshop on Analytic Algorithmics and Combinatorics (ANALCO), 2018.

[18] P. Godefroid, N. Klarlund, and K. Sen, “Dart: directed automated random
testing,” in ACM Sigplan Notices, vol. 40, 2005.

	Introduction
	Background
	Type-driven generation of random values

	Sources of structural information
	Branching on input data
	Abstract interfaces

	Capturing ADTs Structure
	Predicting Distributions
	Extending predictions for structural information
	Overall prediction

	Case Studies
	Branching on input data
	Abstract interfaces

	Related Work
	Final Remarks
	References

