
MUTAGEN: Reliable Coverage-Guided,
Property-Based Testing using Exhaustive Mutations

(accepted preprint)

Agustı́n Mista
Chalmers University of Technology

Gothenburg, Sweden
mista@chalmers.se

Alejandro Russo
Chalmers University of Technology

Gothenburg, Sweden
russo@chalmers.se

Abstract—Automatically-synthesized random data generators
are an appealing option when using property-based testing. There
exists a variety of techniques that extract static information from
the codebase to produce random test cases. Unfortunately, such
techniques cannot enforce the complex invariants often needed
to test properties with sparse preconditions.

Coverage-guided, property-based testing (CGPT) tackles this
limitation by enhancing synthesized generators with structure-
preserving mutations guided by execution traces. Albeit effective,
CGPT relies largely on randomness and exhibits poor scheduling,
which can prevent bugs from being found.

We present MUTAGEN, a CGPT framework that tackles such
limitations by generating mutants exhaustively. Our tool incor-
porates heuristics that help to minimize scalability issues as well
as cover the search space in a principled manner. Our evaluation
shows that MUTAGEN not only outperforms existing CGPT tools
but also finds previously unknown bugs in real-world software.

Index Terms—random testing, mutations, heuristics

I. INTRODUCTION

Random Property-Based Testing (RPBT) is a popular tech-
nique for finding bugs using executable testing properties [10,
25, 40, 6, 12]. A practical limitation of RPBT is the need for
random data generators used to instantiate the testing proper-
ties, and writing highly-tuned generators can take several thou-
sand person-hours of trial and error [29]. Luckily, there exist
several approaches that automatically synthesize random data
generators by extracting static information from the codebase,
e.g., data type definitions and application public interfaces
(APIs). [17, 34, 33, 14, 28, 3]. These approaches, however,
are unable to synthesize generators capable of producing data
satisfying complex invariants not easily derivable from the
codebase. Generating random valid programs to test compilers
is a clear example of this limitation [8], where developers are
forced to write specialized generators by hand [39, 41, 47].

Coverage-Guided, Property-Based Testing (CGPT) [29] is
a technique that borrows ideas from the fuzzing community
to generate highly-structured values while still using auto-
matically derived generators. CGPT keeps queues of inter-
esting previously executed test cases that can be transformed
using structure-preserving mutations to produce new ones.
Intuitively, mutating an existing interesting test case is more
likely to produce a new interesting test case than generating

a new one from scratch. Moreover, unlike the generic bit-
level mutators often used by the fuzzing community [7, 37],
structure-preserving mutations specified at the data type level
can effectively produce only syntactically valid mutants. Such
an approach has shown to be effective when fuzzing systems
accepting structurally complex inputs [22, 46, 20]. Notably,
CGPT uses the data type information of the inputs to the test-
ing properties to derive specialized structure-preserving muta-
tors directly and without the need for external grammars —
making strongly-typed programming languages an ideal match
for this technique. In addition, CGPT relies on execution traces
to distinguish interesting test cases — a technique popularized
by coverage-guided fuzzers like AFL [32]. Here, test cases
are interesting (and therefore worth mutating) only when they
exercise new parts of the code in the system under test.

In this work, we establish several aspects of the seminal
CGPT approach by Lampropoulos et al. that leave room for
improvement (see §II). In particular: 1) if not done carefully,
automatically derived structure-preserving mutators can be-
come “shallow”, unlikely to transform deep test cases more
than superficially; 2) the queuing mechanism can cause delays
if interesting test cases are enqueued frequently and there is
no way to prioritize them; and 3) the heuristic used to assign a
“mutation budget” to each interesting test case (often referred
to as a power schedule) requires fine tuning and can be hard to
generalize. Overcoming these obstacles is important to make
CGPT more suitable for testing real-world software.

To tackle these limitations, we introduce MUTAGEN, a
CGPT framework that applies mutations exhaustively (see
§III). That is, given an interesting test case, our tool forces ev-
ery structure-preserving mutation that can be applied to it to be
evaluated exactly once. This has two main advantages. Firstly,
every subexpression of the input test case is mutated on the
same basis, ensuring that deep transformations are not omitted
due to randomness. Moreover, computing mutations exhaus-
tively eliminates the need for a heuristic power schedule.

Internally, MUTAGEN distinguishes two kinds of mutations.
On one hand, deterministic (pure) mutations encode trans-
formations that yield a single mutated test case obtained by
swapping data constructors around, as well as rearranging or
returning subexpressions. On the other hand, non-deterministic

(random) mutations are used to represent transformations over
large enumeration types. This mechanism let us selectively
escape the scalability issues of exhaustiveness by yielding a
random generator that replaces a specific subexpression of an
input test case with a randomly generated one. This generator
is later sampled a relatively small number of times. This way
MUTAGEN avoids, for instance, mutating every number inside
a test case into every other number of its range.

MUTAGEN’s testing loop incorporates two novel heuristics
that help finding bugs more reliably (§IV). In the first place,
our tool uses last-in-first-out (LIFO) scheduling with priority
when enqueueing interesting test cases for mutation. This way,
interesting test cases that discover larger parts of untested code
are given a higher priority. Moreover, LIFO scheduling allows
the testing loop to jump back and forth between enqueued test
cases as soon as new more interesting ones become available,
eliminating potential delays when the mutation queues grow
more often than they shrink.

The second heuristic controls the number of test cases
sampled from random mutations by monitoring how often we
generate interesting test cases. Whenever this frequency stalls,
MUTAGEN resets the testing loop and increases the effort put
into sampling random mutations. This way, our tool automat-
ically adjusts this parameter on the fly.

We validated our ideas in two different ways. We first
compared MUTAGEN against FuzzChick, the reference CGPT
implementation by Lampropoulos et al., on all the existing
cases studies described in their original work. These case
studies focus on finding counterexamples for buggy variations
of two Information-Flow Control (IFC) machines of different
complexity. Our results (§VI) indicate that: when bugs are
relatively easy to find, MUTAGEN can reliably find them faster
than FuzzChick. On the other hand, when bugs are harder to
find, our tool outperforms FuzzChick in terms of failure rate at
the cost of (possibly) needing more time to find them. Notably,
MUTAGEN is capable of finding bugs that FuzzChick was not
able to find in our evaluation nor in its original one.

Additionally, we compared MUTAGEN against QuickCheck
[10], the most widely used RPBT tool in Haskell, on an
existing WebAssembly engine implementation of industrial
strength. There, MUTAGEN is capable of reliably finding 15
planted bugs in the validator and interpreter, as well as 3 pre-
viously unknown ones. Moreover, this case study lets us eval-
uate the performance versus the overhead of our tool (and its
custom code instrumentation mechanism). All in all, our eval-
uation indicates that testing mutants exhaustively together with
our heuristics to escape scalability issues can be an appealing
technique for finding bugs reliably without sacrificing speed.

We additonally present threats to validity in §VII and dis-
cuss related work in §VIII, to finally conclude in §IX.

II. BACKGROUND

This section briefly introduces the motivation, ideas and
limitations behind CGPT [29]. To illustrate it, we focus on a
simple property defined over binary trees. Such a data structure

can be defined in Haskell with a custom data type with two
data constructors for leaves and branches respectively:
data Tree a = Leaf a | Branch (Tree a) a (Tree a)

The type parameter a indicates that trees can be instantiated
using any type as payload, so the value Leaf True has
type Tree Bool, whereas the value Branch (Leaf 1)
2 (Leaf 3) has type Tree Int. If we assume existence
of a function balanced of type Tree a -> Bool that
asserts that a tree satisfies some notion of balancedness, we
can write properties to validate that the operations defined over
binary trees preserve this invariant. For instance, to validate
the implementation of an insert function, we assert that,
given an element x and a balanced tree t as input, inserting
x into t will produce a balanced tree as output:
prop_insert :: a -> Tree a -> Property
prop_insert x t = balanced t ==> balanced (insert x t)

(The definitions of balanced and insert are not important
here.) The arrow operator (==>) indicates that balanced t
is a precondition of this property, so test cases where the input
tree is unbalanced will get discarded prematurely.

The only missing piece is a random generator of trees. For
this, we can define a naı̈ve generator for trees of integers as:
genTree(size) = if size == 0
then do { x <- genInt; return (Leaf x) }
else oneof [do { x <- genInt; return (Leaf x) }

, do { l <- genTree(size-1);
x <- genInt;
r <- genTree(size-1);
return (Branch l x r) }]

This definition (simplified to make it more accessible) follows
a common type-directed approach used by some existing gen-
erator synthesizer tools. At each step, genTree picks a Tree
data constructor with uniform probability, and calls itself to
generate recursive subexpressions, carefully reducing the input
size limit size by a unit at a time. This ensures termination
by generating only leaves when the size reaches zero (case
size == 0). Integers payloads are generated by calling an
external random generator (genInt) defined elsewhere.

Readers familiar with RPBT will notice that genTree is
not suitable for testing prop_insert with QuickCheck, as
this generator produces mostly unbalanced trees which do not
satisfy the property’s precondition, thus leaving its postcondi-
tion (balanced (insert x t)) largely untested.

Coverage-Guided Property-Based Testing: CGPT al-
leviates the problem of testing properties with non-trivial pre-
conditions while using automatically derived generators by
enhancing the testing process with: 1) target code instrumen-
tation, to capture execution information from each test case;
and 2) high-level, structure-preserving mutations, to produce
syntactically valid test cases from existing ones.

Using code instrumentation in tandem with mutations is a
well-known technique in the fuzzing community [32, 45, 1,
13, 26]. Notably, CGPT can additionally use the result of the
testing properties’ preconditions to distinguish semantically
valid test cases from invalid ones. This is useful to favor
mutating valid test cases over discarded ones.

The CGPT testing loop uses two queues to store valid and
discarded previously executed test cases along with a mutation
budget that controls how many times they can be mutated
before being finally thrown away. This budget is calculated
using a heuristic derived from AFL’s power schedule, i.e.,
more budget to test cases that lead to shorter executions, or that
discover more parts of the code. On each iteration, the testing
loop selects the next test case by mutating the first value on
the queue of valid test cases. If such queue is empty, it mutates
the first test case from the queue of discarded test cases. If
both queues are empty, CGPT generates a new random value
from scratch. The loop then runs this test case and evaluates
whether it was interesting. If the test case was interesting, it
gets enqueued into its corresponding queue (either valid or
discarded), This process alternates between random generation
and mutation until a bug is found or the test limit is reached.

Limitations of CGPT: Lampropoulos et al. com-
pared the mean-time-to-failure (MTTF) of CGPT against ran-
dom testing using both automatically derived generators and
manually-written ones, where their results show that CGPT
lies in between these two approaches. While MTTF is a useful
global metric, we argue that a meticulous evaluation ought to
consider failure rate, i.e., the ability to find a bug in a given
run as an important metric when comparing PBT tools. After
repeating each original experiment 10 times, we observed that
FuzzChick was only able to find 7 (out of 20) and 18 (out of
33) bugs with 100% failure rate in the two IFC machine case
studies. Notably, FuzzChick was unable to find any counterex-
ample for 3 of the planted bugs. With this observation in mind,
we consider three aspects to tackle CGPT’s reliability issues:

• Mutators distribution: for simplicity, the mutators proposed
by Lampropoulos et al. are derived to follow a top-down
approach: mutations can happen at the top level or be
recursively applied to an immediate subexpression of the
input test case with approximately the same probability. This
makes deep recursive mutations very unlikely, as their prob-
ability decreases multiplicatively with each recursive call.
Hence, these mutators can only effectively transform shal-
low test cases, excluding scenarios involving deeply nested
data structures. Ideally, mutations should happen on every
subexpression of the input test case on a reasonable basis.

• Scheduling: CGPT uses single-ended queues to store valid
and discarded interesting test cases, where new test cases
are placed at the end of their corresponding queue. If a test
case discovered a whole new portion of the target code, it
will not be mutated until the rest of the queue ahead of it
gets processed, limiting the effectiveness of the testing loop
whenever queues grow more often than they shrink. In an
extreme case, interesting test cases might not get processed
at all within the testing budget. Thus, we should prioritize
mutating novel test cases right away.

• Power schedule: it is unclear how well this heuristic as-
signs a budget to each interesting test case. On one hand,
assigning too much budget to not-so-interesting wastes pre-
cious testing time. On the other hand, assigning too little

budget to interesting test cases might prevent bugs from
being discovered at all! Finding a balanced heuristic can be
quite challenging in the general case. Ideally, the scheduling
mechanism should be as unbiased as possible.

III. MUTAGEN

This section describes the main ideas behind MUTAGEN,
our revised CGPT tool written in Haskell. 1

MUTAGEN works by mutating test cases in an exhaustive
and precise manner, where 1) each subexpression of a test case
is associated with a set of structure-preserving mutations, and
2) each one of these mutations is scheduled exactly once. We
realized that, by using an exhaustive mutation approach, we
avoid needing a heuristic power schedule to assign a budget
to each interesting test case. Moreover, computing mutants ex-
haustively ensures that interesting mutations are not omitted or
overly exercised due to randomness. This approach is inspired
by exhaustive bounded testing tools like SmallCheck [43] or
Korat [5] — refer to §VIII for a detailed discussion.

A. Exhaustive Mutations

In MUTAGEN, mutators are defined as the set of mutants
that can be obtained by transforming the input test case at the
top-level (the root data constructor). For a given type a, we
represent a mutator of a’s with a function from a’s to a list
of mutants. In Haskell, we introduce the type synonym:
type Mutator a = a -> [Mutant a]

As mentioned earlier, concrete mutants can be obtained either
from a pure or a random mutation, which we define as follows:
data Mutant a = PURE a | RAND (Gen a)

We first focus on pure mutants, which encode deterministic
transformations over the outermost data constructor of the
input — recursive mutations will be introduced soon.

mutate t = case t of
Leaf x -> [
PURE (Branch def x def)

]
Branch l x r -> [
PURE l, PURE r,
PURE (Leaf x),
PURE (Branch l x l),
PURE (Branch r x r),
PURE (Branch r x l)

]

Fig. 1. MUTAGEN Tree mutator.

These transformations can ei-
ther 1) return an immediate
subexpression of the same type
as the input, or 2) swap the out-
ermost data constructor with a
(possibly) different one of the
same type, reusing the imme-
diate subexpressions of the in-
put in any combination that pro-
duces a well-typed value.

Fig. 1 illustrates a mutator for the Tree data type. This defi-
nition simply enumerates mutants that transform the outermost
data constructor. Moreover, notice how a default value def
used to fill the subtrees when “growing” a leaf into a branch.
In practice, def corresponds to the simplest expression we can
construct for the mutant to be type-correct. In our example, the
default Tree value is a leaf containing the smallest value of
the payload type, e.g., Leaf 0 is the default value of Tree
Int. Using a small default value, as opposed to a randomly

1Although we make use of Haskell’s powerful type system, our ideas should
apply to other statically typed languages with minor effort.

generated one (as done by the original CGPT) is also inspired
by exhaustive bounded testing tools, and avoids introducing
unnecessary randomness when growing data constructors.

Formally, for a type T defined in terms of the data construc-
tors Ci, each one with fields of (possibly different) types tij :

T := C1 t11 t12 ... | C2 t21 t22 ... | ...

MUTAGEN synthesizes the mutate function so it pattern
matches on the root data constructor of the input as follows:

mutate(Ci x1 x2 ...) = mutr(Ci x1 x2 ...) ∪ muts(Ci x1 x2 ...)

Firstly, mutr computes the set of possible mutations that return
an immediate subexpression of the same type as the input:

mutr(Ci x1 x2 ...) = {PURExk | xk∈filter(T, {x1, x2, ...})}

Then, muts builds every mutation that swaps the root data con-
structor with a (possibly) different one, reusing (or defaulting
to) compatible subexpressions whenever possible:

muts(Ci x1 x2 ...)=

PURE(Cj x
′
1 x

′
2 ...)

∣∣∣∣∣∣∣∣∣∣
Cj ∈{C1, C2, ...}
x′
k∈filter(t

j
k, {x1, x2, ...})

Cj x
′
1 x

′
2 ... ̸= Ci x1 x2 ...


The helper filter simply returns the subset of the input
values X that match the type t, whereas filter returns the de-
fault value of the type t (deft) if the result of filter is empty:

filter(t,X) = {x | x∈X,typeof(x) = t}

filter(t,X) =

{
filter(t,X) if filter(t,X) ̸= ∅
{deft} otherwise

This ensures that a small constructor can always be grown
into a larger one by inserting default subexpressions whenever
needed. (Recalling the Tree mutator from Fig. 1, we show
this for the case of mutating a Leaf into a Branch.)

We can finally focus on random mutants, which let us se-
lectively avoid exhaustiveness when mutating values of large
enumeration types (e.g. numbers). Instead of creating a PURE
mutant for every numerical subexpression exhaustively, we
condense them into a generator that can be sampled to produce
new random values. This way, a mutator for integers becomes:
mutate n = [RAND genInt]

This approach allows MUTAGEN to control the amount of
effort put into mutating any subexpression of an input test
case associated with a random mutation. This can avoid dedi-
cating unnecessary effort to mutating data payloads when the
execution of the testing property or the system under test is
independent of their values (see §IV).

Algorithm 1: MUTAGEN Testing Loop

Function Loop(P, N, R, gen):
i ← 0
TLog, QValid, QDiscarded ← ∅
while i < N do

x ← Pick(QValid, QDiscarded, gen)
(result, trace) ← WithTrace(P(x))
if not result then return Bug(x)
if Interesting(TLog, trace) then

if not Discarded(result) then
batch ← CreateMutationBatch(x, R)
Enqueue(QValid, batch)

else if not Discarded(Parent(x)) then
batch ← CreateMutationBatch(x, R)
Enqueue(QDiscarded, batch)

i ← i+1
return Ok

Algorithm 2: Mutation Batch Initialization

Function CreateMutationBatch(x, R):
batch ← ∅
for pos in Flatten(Positions(x)) do

for mutant in MutateInside(pos, x) do
switch mutant do

case PURE x̂ do
Enqueue(x̂, batch)

case RAND gen do
repeat R times

x̂ ← Sample(gen)
Enqueue(x̂, batch)

return batch

Mapping top-level mutations everywhere: so far we
have defined mutations that transform only the root node of the
input. To apply these mutations to every subexpression we use
two utility functions. Firstly, a function Positions traverses
the input and builds a Rose tree [31] of mutable positions,
i.e., lists of indices encoding the path from the root to every
mutable subexpression. For instance, the mutable positions of
the value Branch (Leaf 1) 2 (Leaf 3) are:

Positions


Branch

Leaf

1

2 Leaf

3

 =

[]

[0]

[0,0]

[1] [2]

[2,0]

Then, we define a function MutateInside that takes a
desired position within an input test case and mutates its
corresponding subexpression, returning a list of mutants. This
function traverses the desired position, calling itself recursively
until it reaches the desired subexpression, where a mutation
encoded by mutate can be applied directly. The definition of
these functions consists of boilerplate code that our tool syn-
thesizes automatically, thus we omit them to preserve space.

B. Testing loop

We now introduce the base testing loop of MUTAGEN,
outlined in Algorithm 1. Like in CGPT, we use two queues,
QValid and QDiscarded to store valid and discarded interesting
test cases, respectively. Our tool precomputes all the mutations
of a given test case before enqueueing them. These mutations

Algorithm 3: MUTAGEN Seed Selection

Function Pick(QValid, QDiscarded, gen):
if not Empty(QValid) then

batch ← Deque(QValid)
if Empty(batch) then Pick(QValid, QDiscarded, gen)
else

PushFront(QValid, Rest(batch))
return First(batch)

if not Empty(QDiscarded) then
batch ← Deque(QDiscarded)
if Empty(batch) then Pick(QValid, QDiscarded, gen)
else

PushFront(QDiscarded, Rest(batch))
return First(batch)

else return Sample(gen)

are put together into lists we call mutation batches — one for
each mutated test case. To initialize a mutation batch (outlined
in Algorithm 2), we first flatten all the mutable positions of
the input test case in level order. Then, we iterate over all
these positions, retrieving all the mutants associated to each
corresponding subexpression. For each one of these: 1) if it is
a pure mutant carrying a concrete mutated value, we enqueue
it into the mutation batch directly; otherwise 2) it is a random
mutant that carries a random generator with it, in which case
we sample and enqueue R random values using this generator,
where R is a parameter set by the user. At the end, we simply
return the accumulated batch.

Then, the seed selection algorithm (Algorithm 3) picks the
next test case using the same criteria as CGPT, prioritizing
valid test cases over discarded ones, falling back to random
generation when necessary. For this, we simply pick the next
mutated test case from the current precomputed batch, jumping
to the next batch in line when the current one becomes empty.

Having selected the next test case, the testing loop proceeds
to execute it, capturing both the result (valid, discarded, or
failed) and its execution trace. If the test case fails, it is
reported as a bug. If not, the algorithm evaluates if it was
interesting based on its trace information and the one from
previously executed test cases (represented by TLog). If the
test case was interesting, its mutants are precomputed and
enqueued on its corresponding queue. This process is repeated
until finding a bug or reaching the test limit N.

A notable difference with CGPT’s testing loop is the crite-
rion for enqueuing discarded tests. We found that, especially
for large data types, the queue of discarded candidates tends to
grow disproportionately large, making it hardly usable while
consuming large amounts of memory. To improve this, we re-
sort to mutating discarded tests cases only when we have some
evidence that they are “almost valid.” For this, each mutated
test case remembers whether its parent (the original test case
they derive from) was valid. Then, we enqueue discarded test
cases only if they descend from a valid parent (see Algorithm
1). This way we fill the discarded queue with lesser but more
interesting test cases.

Algorithm 4: Priority LIFO Heuristic

Function Loop(P, N, R, gen):
· · ·
x ← Pick(QValid, QDiscarded, gen)
(result, trace) ← WithTrace(P(x))
· · ·
if Interesting(TLog, trace) then

if not Discarded(result) then
batch ← CreateMutationBatch(x, R)
prio ← TracePriority(TLog, trace)
PushFront(QValid, prio, batch)

· · ·
Function Pick(QValid, QDiscarded, gen):

if not Empty(QValid) then
(batch, prio) ← DequeMax(QValid)
if Empty(batch) then Pick(QValid, QDiscarded, gen)
else

PushFront(QValid, prio, Rest(batch))
return First(batch)

if not Empty(QDiscarded) then
/* Analogous to the case above */

· · ·

IV. MUTAGEN HEURISTICS

In this section we introduce two heuristics implemented on
top of the base testing loop of MUTAGEN described in §III.

A. Priority LIFO Scheduling

This heuristic tackles the issue of enqueuing new interesting
test cases at the end of (possibly) long queues of not-so-
interesting ones. For this, MUTAGEN captures the execution
trace of each test case and computes its novelty relative to
previously executed ones with respect to their edge coverage,
i.e, test cases that discover new edges in the system under test
are considered interesting, and their priorities are proportional
to the number of edges they discovered.

Using this mechanism, we can modify MUTAGEN’s base
testing loop replacing each mutation queue with a priority
queue indexed by the novelty of their test cases. These changes
are illustrated in Algorithm 4. Statements in red indicate im-
portant changes to the base algorithm, whereas ellipses denote
parts of the code that remain unchanged.

To pick the next test case, we retrieve the first one with
the highest priority. Then, when we find a new interesting test
case, it gets enqueued at the beginning of the queue of its
corresponding priority. This allows the testing loop to jump
immediately onto mutating new interesting test cases as soon
as they are found (even at the same priority), and to jump back
to previous test cases as soon as mutants become less novel.

B. Tuning Random Mutations Parameter

As introduced in §III, our tool is parameterized by the num-
ber of times it samples the random generators associated with
random mutations (R). But, how many test cases should we
sample? Answering this question precisely can be challenging,
so this second heuristic aims to alleviate the problem.

We found that the smaller the number of times we sample
from random mutations, the easier it is for the trace log that
records executions to get saturated, i.e., when interesting test
cases stop getting discovered or are discovered very seldomly.

Algorithm 5: Adaptive Random Mutations Heuristic

Function Loop(P, N, gen):
boring ← 0; reset ← 1000; R ← 1
· · ·
while i < N do

if boring > reset then
TLog ← ∅
reset ← reset * 2
R ← R * 2

· · ·
if not result then return Bug(x)
if Interesting(TLog, trace) then

boring ← 0
· · ·

else boring ← boring + 1
· · ·

We realized that we can use this information to dynamically
adapt the number of times we sample from random mutations.
This idea is described in Algorithm 5. The process is as fol-
lows: 1) we start the testing loop with the R parameter set to
one, and 2) each time we find that a test is not interesting (i.e.
boring), we increment a counter. Then, 3) if we have not pro-
duced any interesting test case after a certain number of tests
(1000 tests seems to be a reasonable threshold in practice), we
duplicate the number of random mutations and the threshold.
Additionally, we reset the trace log so interesting test cases
found on a previous iteration can be found and enqueued for
mutation again with a higher effort dedicated to sampling from
random mutations.

Notably, this heuristic can be useful when the execution of
the system under test depends on invariants over numeric data
(e.g, the number of pixels declared by the header of an image
matching the size of its actual payload). There, starting with a
single random mutation will quickly saturate the trace log with
discarded (invalid) tests, and this heuristic will continuously
increase the effort put into sampling from random mutations
until some randomly generated value satisfies the required
invariant, making the overall test case valid.

V. CASE STUDIES

We evaluated the performance of MUTAGEN using three
case studies. The first two are IFC abstract machines that
enforce noninterference [16, 44] using runtime checks. While
similar in spirit, these abstract machines have a completely
different complexity. The first one follows a relatively sim-
ple stack-based execution model, with a limited number of
instructions. The second one is substantially more featureful,
including registers, dynamic memory allocation and a larger
instruction set, among others. Notably, both machines were
originally proven correct by Azevedo de Amorim et al. [2] in
Coq, and later degraded by systematically introducing bugs in
their IFC policy enforcing mechanism. Lampropoulos et al.
borrowed these case studies from existing literature [23, 24] to
compare FuzzChick against RPBT using automatically derived
and hand-tuned random generators. Here, we reproduce all
their experiments and compare them against our tool. Worth

mentioning, we mechanically translated these case studies to
Haskell in order to run MUTAGEN on their test suites.

The third case study evaluates MUTAGEN in a realistic sce-
nario, and targets haskell-wasm [42], an existing WebAssem-
bly engine of industrial strength. Unfortunately, the current
state of FuzzChick’s development does not allow to easily port
new case studies into its framework, so comparing MUTA-
GEN with FuzzChick on this case study has been out of the
scope of this work. Instead, we compare MUTAGEN against
QuickCheck, evaluating its effectiveness versus the relative
overhead of our custom code instrumentation.

A. IFC Stack and Register Machines

These abstract machines enforce noninterference, a hyper-
property based on the notion of indistinguishability. Intuitively,
two machine states are indistinguishable if they only differ on
secret data. Using this notion, the variant of noninterference
we are interested in is called single-step noninterference [23]
(SSNI). Given two indistinguishable machine states, SSNI
asserts that running a single instruction on both machines
brings them to resulting states that are also indistinguishable.
To achieve this, every runtime value handled by these abstract
machines is labeled with a security level, i.e., L (for “low” or
public) or H (for “high” or secret). Security labels are then
propagated throughout the execution of the program whenever
the machines execute an instruction. For this, both machines
use a different rule table to specify their IFC policy. These
tables store the dynamic check that each machine needs to
perform before running each instruction, along with the re-
sulting security labels corresponding to the program counter
and the instruction result. For instance, to execute the Store
instruction (which stores a value in a memory pointer), the
IFC Stack machine checks that both the labels of the pro-
gram counter and the pointer together can flow to the label
of the destination memory cell. If this condition is not met,
this machine immediately halts its execution. After this check,
the machine overwrites the value at the destination cell and
updates its label with the maximum sensibility of the involved
labels. In the rule table, this looks as follows:

Instruction Precondition Check Final PC Label Final Result Label
Store lpc ∨ lp ⊑ lv lpc lv′ ∨ lpc ∨ lp

Where lpc, lp, lv , and lv′ represent the labels of: the program
counter, the memory pointer, and the old and new values stored
in that memory cell. The symbol ∨ simply denotes the join of
two labels, i.e., the maximum of their sensibilities. To preserve
space, we encourage the reader to refer to the work of Hriţcu
et al. [23, 24] and Lampropoulos et al. [29] for further details
about the implementation and semantics of these case studies.

Bugs are systematically injected in the IFC enforcing mech-
anism of both machines by weakening the checks stored in
their corresponding IFC rule table. For instance, the following
are the buggy rule variations (in red) for the Store instruction
of the IFC Stack machine:

Instruction Precondition Check Final PC Label Final Result Label
Store lpc ⊑ lv lpc lv′ ∨ lpc ∨ lp
Store lp ⊑ lv lpc lv′ ∨ lpc ∨ lp
Store lpc ∨ lp ⊑ lv ⊥ lv′ ∨ lpc ∨ lp
Store lpc ∨ lp ⊑ lv lpc lpc ∨ lp
Store lpc ∨ lp ⊑ lv lpc lv′ ∨ lp
Store lpc ∨ lp ⊑ lv lpc lv′ ∨ lpc

This way, there are 20 different buggy ways the IFC Stack
machine can be tampered with to violate its IFC policy and
invalidate SSNI. Likewise, 33 different IFC-violating bugs can
be inserted in the IFC Register machine.

The challenge with testing SSNI for these two case studies is
to satisfy its sparse precondition: we need to generate two valid
indistinguishable machine states to even proceed to execute
the next instruction. Lampropoulos et al. demonstrated that
generating two independent machine states using QuickCheck
has virtually no chance of producing valid indistinguishable
ones. However, using the mutation mechanism, we can obtain
a pair of valid indistinguishable machine states by generating
a single valid machine state (something still hard but much
easier than before), and then producing a similar mutated copy.
This way, we have a higher chance of producing two almost
identical states that pass the sparse precondition.

B. WebAssembly Engine

WebAssembly [19] is a language designed for executing
low-level code on the web. WebAssembly programs are first
validated and later executed in a sandboxed environment.
The language is relatively simple, in essence 1) it contains
only four base types, representing both integers and IEEE754
floating-point numbers of either 32 or 64 bits; 2) values of
these types are manipulated by functions written using se-
quences of stack instructions; 3) functions are organized in
modules and must be explicitly imported/exported; 4) memory
blocks can be imported, exported, and grown dynamically;
among others. WebAssembly semantics are fully specified, and
programs must be consistently interpreted across engines —
despite some subtle details we will address soon. For this, the
WebAssembly standard provides a reference implementation
with all the functionality expected from a compliant engine.

Our tool is an attractive match for testing WebAssembly
engines: most of the programs that can be represented using
WebAssembly’s AST are invalid, and automatically derived
random generators cannot satisfy the invariants required to
produce interesting test cases.

In this work, we apply MUTAGEN to test the two most
complex subsystems of haskell-wasm: the validator and the in-
terpreter — both being previously tested using a unit test suite.

Id Subsystem Category Description
1 Validator Bug Invalid memory alignment validation
2 Validator Discrepancy Validator accepts returning multi-value blocks
3 Interpreter Bug Function invoker ignores arity mismatch
4 Interpreter Bug Allowed out-of-bounds memory access
5 Interpreter Discrepancy Non-standard NaN reinterpretation

TABLE I
ISSUES FOUND BY MUTAGEN IN haskell-wasm.

Id Subsystem Description
1 Validator Wrong if-then-else type validation on else branch
2 Validator Wrong stack type validation
3 Validator Removed function type mismatch assertion
4 Validator Removed max memory instances assertion
5 Validator Removed function index out-of-range assertion
6 Validator Wrong type validation on i64.eqz instruction
7 Validator Wrong type validation on i32 binary operations
8 Validator Removed memory index out-of-range assertion
9 Validator Wrong type validation on i64 constants

10 Validator Removed alignment validation on i32.load instruction
11 Interpreter Wrong interpretation of i32.sub instruction
12 Interpreter Wrong interpretation of i32.lt_u instruction
13 Interpreter Wrong interpretation of i32.shr_u instruction
14 Interpreter Wrong local variable initialization
15 Interpreter Wrong memory address casting on i32.load8_s instruction

TABLE II
BUGS INJECTED INTO haskell-wasm.

For this, we took advantage of the reference implementation
to find discrepancies (that could potentially lead to bugs) via
differential testing [30]. Our testing properties assert that any
result produced by haskell-wasm matches that of the reference
implementation. Notably, MUTAGEN discovered three latent
bugs that the existing test suite was unable to reveal. Moreover,
MUTAGEN exposed two other discrepancies between haskell-
wasm and the reference implementation. These discrepancies
trigger parts of the specification that were either not yet sup-
ported by the reference implementation (multi-value blocks),
or that produce a well-known non-deterministic undefined
behavior (NaN reinterpretation) [41]. All these findings (see
Table I) were confirmed by the authors of haskell-wasm.

Having sorted these issues out, we mechanically injected
10 new bugs in the validator as well as 5 new bugs in the
interpreter of this engine (see Table II). These bugs either
1) remove an existing integrity check (to weaken the We-
bAssembly type-system/validator); or 2) simulate a copy-paste
bug [9], replacing the implementation of an instruction with a
compatible one (e.g., i32.add by i32.sub).2

Testing the WebAssembly Validator: Our approach is
to assert that, whenever a randomly generated (or mutated)
WebAssembly module is valid according to haskell-wasm, then
the reference implementation agrees upon it. In Haskell, we
write the property:
prop_validator m = isValidHaskellWasm m ==> isValidRef m

The precondition (isValidHaskellWasm m) runs the in-
put WebAssembly module m against haskell-wasm’s validator,
whereas the postcondition (isValidRef m) serializes m,
runs it against the reference implementation and checks that
no errors are produced.

We note that, although we only focus on finding false nega-
tives, a comprehensive test suite should also test for false pos-
itives, i.e., when a module is valid and haskell-wasm rejects it.

Testing the WebAssembly Interpreter: Testing the We-
bAssembly interpreter is substantially more complex than test-
ing the validator since it requires running and comparing the

2These bugs were inspired by the real bug #1 we found prior to this step.

output of test case programs. To achieve this, the generated test
cases need to comply with a common interface that can be in-
voked both by haskell-wasm and the reference implementation.
For simplicity, we write a helper function mkModule to build
a stub WebAssembly module that initializes one memory block
and exports a single function. This helper is parameterized
by the definition of the module’s single function, along with
its type signature and name. Then, we can use mkModule
to define a testing property parameterized by a function type,
along with its definition and invocation arguments:
prop_interpreter ty fun args =
do let m = mkModule fun ty "f"

resHaskellWasm <- invokeHaskellWasm m "f" args
resRef <- invokeRef m "f" args
return (resHaskellWasm === resRef)

This testing property instantiates a module stub m with the
input WebAssembly function (fun) and its type signature
(ty). Then, it invokes the function f of the module m both on
haskell-wasm and the reference interpreter with the provided
arguments (args). Finally, the property asserts whether their
results are equivalent.3 Interestingly, equivalence does not im-
ply equality. Non-deterministic operations in WebAssembly
like NaN reinterpretations can produce different equivalent
results (as exposed by the discrepancy #5 in Table I), and our
equivalence relation needs to take that into account.

Using this testing property directly might not sound wise,
as randomly generated lists of input arguments will be very
unlikely to match the type signature of randomly generated
functions. However, it lets us test what happens when pro-
grams are not properly invoked, and it quickly discovered the
previously unknown bug #3 in haskell-wasm mentioned above.
Having fixed this issue, we define a specialized version of
prop_interpreter that fixes the type of the generated
function to take two arguments x and y (of type I32 and
F32, respectively) and return an I32 as a result:
prop_interpreter_i32 f x y =
prop_interpreter (Type { args=[I32, F32], res=[I32] })

f [VI32 x, VF32 y]

This property lets us generate functions of a fixed type and
invoke them with randomly generated inputs of the expected
types. We use this property to find all the bugs injected into
haskell-wasm’s interpreter in the next section.

VI. EVALUATION

We repeated each experiment 10 times in a workstation with
64GB of RAM and an Intel Core i7-8700 CPU. In all cases, we
used a one-hour timeout to stop the execution if an experiment
had not yet found a counterexample. Moreover, we followed
the approach taken by Lampropoulos et al. and collected the
mean-time-to-failure (MTTF) of each bug, i.e., how quickly a
bug can be found in wall clock time. In addition, we collected
the failure rate (FR) observed for each bug, i.e. the proportion
of times each tool finds each bug within the one-hour testing
budget. Unlike Lampropoulos et al., we only aggregate the
MTTF of successful runs, i.e, when a bug was found, since

3We also set a short timeout to discard potentially diverging programs.

7 8 14 1 5 16 17 11 2 20 6 15 19 3 4 10 13 12 9 18

101

102

103

104

105

106

M
T

T
F

(m
ill

is
ec

on
ds

)

7 8 14 1 5 16 17 11 2 20 6 15 19 3 4 10 13 12 9 18
0

0.5

1

Injected Bug

Fa
ilu

re
R

at
e

FuzzChick MUTAGEN MUTAGEN (no LIFO) MUTAGEN (no reset)

Fig. 2. FuzzChick versus MUTAGEN in the IFC stack machine.

doing so for all runs heavily inflates results when the failure
rate is below 100%. In all case studies, we additionally show
the effect of the heuristics described in §IV by individually
disabling them. We call these variants no LIFO and no reset.
For no reset, the number of times we sample random mutants
(R) is no longer controlled by MUTAGEN, so we arbitrarily
fixed it to R=25 throughout the experiment. 4

A. IFC Stack and Register Machines

The results of these case studies are shown in Fig. 2 and
Fig. 3, respectively. In both cases, the injected bugs are ordered
by the failure rate achieved by FuzzChick in decreasing order.
Moreover, notice the logarithmic scale used on the MTTF.

Firstly, we observed a statistically significant improvement
in terms of the overall failure rate: MUTAGEN achieved 100%
and 90.9% failure rate (versus 71% and 74.2% for FuzzChick)
in the IFC Stack and Register cases studies, respectively.

Moreover, if we observe the MTTF achieved by each tool,
we recognize in both cases that MUTAGEN is significantly
faster than FuzzChick when finding “easy” bugs, i.e., those
which both tools can reliably find on each run. However, the
results are not as intuitive for the “harder” bugs, i.e, where
the failure rate of some tool drops below 100%. To better un-
derstand the tradeoffs between these two metrics, we grouped
bugs into four categories based on the statistical evidence5 we
observed over the corresponding MTTF achieved by each tool:
1) when FuzzChick is faster than MUTAGEN, 2) when MUTA-
GEN is faster than FuzzChick, 3) when results are inconclusive,
i.e., no statistical evidence in favor of either tool, and 4) when
FuzzChick always fails to find a bug. We avoid considering
the case where MUTAGEN always fails to find a bug as this
scenario did not occur in our experiments. In each case, we
additionally computed the mean failure rate across bugs for
each tool. These curated results are shown in Tables III and
IV. In both cases, we can observe that our tool is faster than
FuzzChick for a significant number of bugs, while there are
only two bugs in the IFC Register Machine case study where
FuzzChick consistently outperforms MUTAGEN. The inconclu-
sive cases reveal that MUTAGEN achieves a considerably larger
failure rate without being significantly slower than FuzzChick.

4A replication package [35] is available for reviewing purposes.
5Based on each tail of a Mann-Whitney U-Test with threshold p < 0.05.

14 25 24 18 23 15 1 22 20 27 26 21 29 8 6 11 2 17 13 12 16 28 10 3 33 19 32 7 9 30 4 5 31

101

102

103

104

105

106

107

M
T

T
F

(m
ill

is
ec

on
ds

)

14 25 24 18 23 15 1 22 20 27 26 21 29 8 6 11 2 17 13 12 16 28 10 3 33 19 32 7 9 30 4 5 31
0

0.5

1

Injected Bug

Fa
ilu

re
R

at
e

FuzzChick MUTAGEN MUTAGEN (no LIFO) MUTAGEN (no reset)

Fig. 3. FuzzChick versus MUTAGEN in the IFC register machine.

In terms of the MUTAGEN heuristics, we observed that
disabling our LIFO scheduling (case no LIFO) does not show
a large impact on the results. We noticed that, for these case
studies, when a new interesting test case gets enqueued, all its
mutants (and their descendants) are quickly processed before
new ones start piling up, keeping the mutation queues empty
most of the time (generation mode). On the other hand, dy-
namically tunning of the random mutation parameter seems
critital to find the harder bugs, as disabling it (case no reset)
heavily affects MUTAGEN’s failure rate in such cases.

B. WebAssembly Engine

The results of this case study are shown in Fig. 4, ordered
by the MTTF achieved by MUTAGEN. We first focus on the
bugs injected in the validator (Fig. 4 left). There, we quickly
conclude that QuickCheck is not well suited to find most of
the bugs — it merely finds the easier bugs #5 and #3 in just 1
out of 10 runs. The reason behind this is simple: an automat-
ically derived generator is virtually unable to produce valid
WebAssembly modules other than the trivial empty one. Using
the same random generator, however, MUTAGEN consistently
finds every bug in less than 4 seconds. Moreover, disabling the
heuristics does not affect the failure rate but tends to add some
time overhead to the MTTF, where the no LIFO and no reset
variants are 2.1x and 1.4x slower than the baseline on average.

Bugs where Count Mean Failure Rate
FuzzChick MUTAGEN

FuzzChick is faster 0 - -
Neither tool is faster 2 0.35 1
MUTAGEN is faster 17 0.79 1
FuzzChick always times out 1 0 1

TABLE III
CURATED RESULTS FOR THE IFC STACK MACHINE CASE STUDY.

Bugs where Count Mean Failure Rate
FuzzChick MUTAGEN

FuzzChick is faster 2 0.8 0.75
Neither tool is faster 8 0.52 0.8
MUTAGEN is faster 20 0.93 1
FuzzChick always times out 3 0 0.7

TABLE IV
CURATED RESULTS FOR THE IFC REGISTER MACHINE CASE STUDY.

If we now focus on the bugs injected into the interpreter
(Fig. 4 right), we notice that finding bugs now requires min-
utes instead of seconds, as both interpreters need to validate
and run the inputs before producing a result to compare. We
also observe a significant improvement in the performance of
QuickCheck in terms of failure rate. This is of no surprise:
we deliberately reduced the search problem to generating
functions bodies instead of complete WebAssembly modules.
Notably, QuickCheck finds counterexamples for the bug #14
almost instantly. This is because this bug can be found using a
very small counterexample, and QuickCheck prefers sampling
small test cases at the beginning of the testing loop. While
MUTAGEN uses this approach when in generation mode, our
scheduler does not take the size of an interesting test case
into account when computing its priority — future work
will investigate this possibility. Nonetheless, MUTAGEN still
outperforms QuickCheck on the remaining bugs in terms of
MTTF. Moreover, the no reset variant resulted in a 2.9x av-
erage slowdown with respect to the baseline, whereas the no
LIFO variant shows a subtle speedup at the cost of no longer
finding the bug #15 with 100% failure rate.

Finally, this case study allows us to analyze the overhead
introduced by the custom code instrumentation and internal
processing used in MUTAGEN versus the black-box approach
used by QuickCheck. Table V compares the total number of
executed and passed tests per second achieved by each tool.

5 3 4 2 9 8 6 7 10 1

101

102

103

104

105

106

107

M
T

T
F

(m
ill

is
ec

on
ds

)

13 11 12 14 15

101

102

103

104

105

106

107

5 3 4 2 9 8 6 7 10 1
0

0.5

1

Injected Bug (prop_validator)

Fa
ilu

re
R

at
e

13 11 12 14 15
0

0.5

1

Injected Bug (prop_interpreter_i32)

QuickCheck MUTAGEN MUTAGEN (no LIFO) MUTAGEN (no reset)

Fig. 4. QuickCheck versus MUTAGEN in the WebAssembly case study.

Property QuickCheck MUTAGEN
Total Passed Total Passed

prop_validator 31882.78 0.0003 3505.68 756.52
prop_interpreter_i32 106619.31 18.02 2142.14 500.67

TABLE V
TESTS PER SECOND ON THE WEBASSEMBLY CASE STUDY ACROSS TOOLS.

Although MUTAGEN is considerably slower than QuickCheck
at executing tests (roughly 9x and 49x slower when test-
ing prop_validator and prop_interpreter_i32 re-
spectively), it runs substantially more valid tests that pass the
sparse preconditions in the same amount of time, which can
ultimately lead us to find bugs faster.

VII. THREATS TO VALIDITY

We evaluated MUTAGEN in three different scenarios that
require generating highly-structured inputs, where it was able
to find several planted and real previously-unknown bugs. In
particular, we compared our tool against all the existing case
studies previously considered by Lampropoulos et al.. How-
ever, we cannot generalize that our tool will be effective at
finding bugs in other scenarios. To compensate, MUTAGEN is a
fully-automated tool that synthesizes all the needed boilerplate,
making it an appealing alternative whenever QuickCheck is
unable to penetrate properties with sparse preconditions.

As mentioned in §V, our evaluation required us to translate
both cases studies used by Lampropoulos et al. from Coq
to Haskell. Although this translation was performed mechan-
ically, we do not have formal guarantees that our Haskell
version of the code behaves exactly as the original one.

VIII. RELATED WORK

Automated Random Data Generation: DRAGEN [34]
is a meta-programming tool that synthesizes random gen-
erators from data types definitions, using stochastic models
to predict and optimize their distribution toward user-defined
target ones. DRAGEN2 [33] extends this idea with support
for extracting library APIs and function input patterns from
the codebase. QuickFuzz [17, 18] is a fuzzer that exploits
these ideas to synthesize random generators from existing
Haskell libraries, which are combined with off-the-shelf low-
level fuzzers to find bugs in heavily used programs.

Automatically deriving random generators is substantially
more complicated when the generated data must satisfy sparse
preconditions. Claessen et al. [11] developed an algorithm
for generating inputs constrained by boolean preconditions
with almost-uniform distribution. Lampropoulos et al. [27]
extended this approach by adding a limited form of constraint
solving controllable by the user. Recently, Lampropoulos et al.
[28] proposed a mechanism to obtain constrained generators
automatically from inductively defined relations in Coq.

All these generational approaches are somewhat orthogonal
to the ideas behind MUTAGEN, and while our tool is tailored
to improve the performance of poor automatically derived
generators, it can benefit from using better generators to find
initial (valid) interesting seeds faster.

Coverage-Guided Fuzzing: AFL [32] is the reference
tool when it comes to coverage-guided fuzzing. AFLFast [4]
extends AFL using Markov chain models to tune the power
scheduler toward testing low-frequency paths. MUTAGEN’s
scheduler is deliberately simple and does not account for path
frequency — future work should investigate this possibility.
CollAFL [15] is a variant of AFL that uses path- instead of
edge-based coverage to distinguish executions more precisely
by reducing path collisions. We tested this approach in MUTA-
GEN and found that some bugs can be found faster and more
reliably using a prefix-tree-based prioritization of interesting
test cases. However, storing the trace of every executed test
case a in prefix tree consumes large amounts of memory and
the lookup performance heavily degrades over time. Future
work should investigate the tradeoffs of this approach in depth.

Havrikov and Zeller [21] have proposed an algorithm that
uses input grammars to systematically cover the input space
in a bounded fashion, which closely relates to our approach
given the similarities between input grammars and values de-
scribed by algebraic data types. However, MUTAGEN uses the
execution trace feedback to decide when to grow recursive
grammar nodes one step at a time, whereas the approach
by Havrikov and Zeller unfolds these steps into exhaustively
testing k-grams pairs of grammar constructions.

BeDivFuzz [36] is a fuzzing approach that separates mu-
tations into “structure-changing” and “structure-preserving”,
which closely relate to MUTAGEN’s pure and random mutant
kinds, respectively. BeDivFuzz uses this distinction to search
for diverse input structures (via structure-changing mutations)
and then apply structure-preserving mutations to them to pro-
duce structure-equivalent variants. In turn, MUTAGEN uses
this distinction to avoid testing every structure-equivalent vari-
ant exhaustively.

Zest [38] and Crowbar [13] are two fuzzing tools that mutate
the bits representing the pseudo-random choices taken by the
input generators instead of relying on specialized structure-
preserving mutators. While our approach carries the burden of
synthesizing such mutators, it allows us to implement future
high-level optimizations, e.g, leveraging lazy evaluation to
avoid mutating unevaluated parts of an interesting test case.

Exhaustive Bounded Testing: A different category of
property-based testing tools does not rely on randomness. In-
stead, test cases are exhaustively enumerated and tested from
smaller to larger up to a certain size bound. Feat [14] formal-
izes the notion of functional enumerations. For any algebraic
type, it synthesizes a bijection between a finite prefix of the
natural numbers and a set of increasingly larger values of the
input type. This bijection can be traversed exhaustively or,
more interestingly, randomly accessed. This allows the user
to easily generate random test cases uniformly simply by
sampling natural numbers. However, test cases are enumer-
ated based only on their type definition, so this technique is
not suitable for testing properties with sparse preconditions
expressed elsewhere. SmallCheck [43] is a Haskell tool that
also follows this approach. It progressively executes the test-
ing properties against all possible input test cases of up to

a certain depth. Similarly, Korat [5] is a Java tool that uses
method specification predicates to automatically generate all
non-isomorphic test cases up to a given small size.

These approaches rely on pruning mechanisms to avoid
generating too many equivalent test cases before their exhaus-
tiveness becomes impractical. LazySmallCheck is a variant of
SmallCheck that uses lazy evaluation to automatically prune
the search space by detecting unevaluated subexpressions. In
Korat, pruning is done by instrumenting method precondition
predicates and analyzing which parts of the execution trace
correspond to each evaluated subexpression.

Our tool uses exhaustiveness as a way to reliably enforce
that all possible mutants of an interesting test case are sched-
uled. In contrast to fully-exhaustive tools, MUTAGEN relies
on randomly generated test cases as a shortcut to find initial
interesting test cases without enumerating them exhaustively.
MUTAGEN additionally supports lazy pruning, i.e., it can de-
tect unevaluated subexpressions and avoid producing muta-
tions over their corresponding positions. This can improve the
overall performance when testing non-strict properties. In our
case studies, however, the precondition of the testing properties
fully evaluate their inputs before executing the postconditions,
thus we avoided including this optimization in our evaluation.
Our future work will investigate the effect of MUTAGEN’s lazy
pruning against non-strict testing properties.

IX. CONCLUSIONS

We presented MUTAGEN, a coverage-guided, property-
based testing tool that extends the original CGPT approach
with an exhaustive mutation mechanism that generates every
possible mutant for each interesting test case, scheduling them
to be tested exactly once. Our experimental results indicate
that MUTAGEN outperforms the simpler CGPT approach im-
plemented in FuzzChick in terms of both failure rate and
tests until first failure. Moreover, we show how our tool can
be applied in a real-world testing scenario, where it quickly
discovers 15 planted and 3 previously unknown bugs.

REFERENCES

[1] LibFuzzer: A library for coverage-guided fuzz testing.
http://llvm.org/docs/LibFuzzer.html, 2019.

[2] Arthur Azevedo de Amorim, Nathan Collins, André
DeHon, Delphine Demange, Cătălin Hriţcu, David
Pichardie, Benjamin C. Pierce, Randy Pollack, and An-
drew Tolmach. A verified information-flow architecture.
SIGPLAN Not., 49(1):165–178, January 2014. ISSN
0362-1340. doi: 10.1145/2578855.2535839.

[3] Maciej Bendkowski, Katarzyna Grygiel, and Paul Ta-
rau. Boltzmann samplers for closed simply-typed lambda
terms. In In Proceedings of International Symposium on
Practical Aspects of Declarative Languages. ACM, 2017.

[4] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoud-
hury. Coverage-based greybox fuzzing as markov chain.
IEEE Transactions on Software Engineering, 45(5):489–
506, 2017.

[5] Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko
Marinov. Korat: Automated testing based on java pred-
icates. ACM SIGSOFT Software Engineering Notes, 27
(4):123–133, 2002.

[6] Lukas Bulwahn. The new quickcheck for isabelle.
In International Conference on Certified Programs and
Proofs, pages 92–108. Springer, 2012.

[7] CACA Labs. zzuf - multi-purpose fuzzer.
http://caca.zoy.org/wiki/zzuf, 2010.

[8] Junjie Chen, Jibesh Patra, Michael Pradel, Yingfei Xiong,
Hongyu Zhang, Dan Hao, and Lu Zhang. A survey of
compiler testing. ACM Computing Surveys, 53(1), 2020.
ISSN 0360-0300. doi: 10.1145/3363562.

[9] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth
Hallem, and Dawson Engler. An empirical study of op-
erating systems errors. In Proceedings of the Eighteenth
ACM Symposium on Operating Systems Principles, SOSP
’01, page 73–88, New York, NY, USA, 2001. Associa-
tion for Computing Machinery. ISBN 1581133898. doi:
10.1145/502034.502042.

[10] Koen Claessen and John Hughes. QuickCheck: A
lightweight tool for random testing of Haskell programs.
In Proceedings of the ACM SIGPLAN International Con-
ference on Functional Programming (ICFP), 2000.

[11] Koen Claessen, Jonas Duregård, and Michał H. Palka.
Generating constrained random data with uniform dis-
tribution. In Proceedings of the Functional and Logic
Programming FLOPS, 2014.

[12] Maxime Dénès, Cătălin Hriţcu, Leonidas Lampropou-
los, Zoe Paraskevopoulou, and Benjamin C Pierce.
Quickchick: Property-based testing for coq. In The Coq
Workshop, 2014.

[13] Stephen Dolan and Mindy Preston. Testing with crowbar.
In OCaml Workshop, 2017.

[14] Jonas Duregård, Patrik Jansson, and Meng Wang. Feat:
Functional enumeration of algebraic types. In Proceed-
ings of the ACM SIGPLAN International Symposium on
Haskell, 2012.

[15] Shuitao Gan, Chao Zhang, Xiaojun Qin, Xuwen Tu,
Kang Li, Zhongyu Pei, and Zuoning Chen. CollAFL:
Path sensitive fuzzing. In 2018 IEEE Symposium on
Security and Privacy (SP), pages 679–696. IEEE, 2018.

[16] Joseph A. Goguen and José Meseguer. Security policies
and security models. In 1982 IEEE Symposium on Se-
curity and Privacy, pages 11–11. IEEE, 1982.

[17] Gustavo Grieco, Martı́n Ceresa, and Pablo Buiras. Quick-
Fuzz: An automatic random fuzzer for common file for-
mats. In Proceedings of the ACM SIGPLAN International
Symposium on Haskell, 2016.

[18] Gustavo Grieco, Martı́n Ceresa, Agustı́n Mista, and Pablo
Buiras. QuickFuzz testing for fun and profit. Journal of
Systems and Software, 134, 2017.

[19] Andreas Haas, Andreas Rossberg, Derek L Schuff, Ben L
Titzer, Michael Holman, Dan Gohman, Luke Wagner,
Alon Zakai, and JF Bastien. Bringing the web up to
speed with webassembly. In Proceedings of the 38th

ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 185–200, 2017.

[20] William Gallard Hatch, Pierce Darragh, and
Eric Eide. Xsmith software repository.
https://www.flux.utah.edu/project/xsmith, 2020.

[21] Nikolas Havrikov and Andreas Zeller. Systematically
covering input structure. In Proceedings of the 34th
IEEE/ACM International Conference on Automated Soft-
ware Engineering, ASE ’19, page 189–199. IEEE Press,
2019. ISBN 9781728125084. doi: 10.1109/ASE.2019.
00027.

[22] Christian Holler, Kim Herzig, and Andreas Zeller.
Fuzzing with code fragments. In 21st USENIX Security
Symposium (USENIX Security 12), pages 445–458, 2012.

[23] Cătălin Hriţcu, John Hughes, Benjamin C. Pierce,
Antal Spector-Zabusky, Dimitrios Vytiniotis, Arthur
Azevedo de Amorim, and Leonidas Lampropoulos. Test-
ing noninterference, quickly. ACM SIGPLAN Notices, 48
(9):455–468, 2013.

[24] Cătălin Hriţcu, Leonidas Lampropoulos, Antal Spector-
Zabusky, Arthur Azevedo De Amorim, Maxime Dénès,
John Hughes, Benjamin C Pierce, and Dimitrios Vytini-
otis. Testing noninterference, quickly. Journal of Func-
tional Programming, 26, 2016.

[25] John Hughes. Erlang/quickcheck. In Ninth International
Erlang/OTP User Conference, Älvsjö, Sweden. November
2003, 2003.

[26] Rody Kersten, Kasper Luckow, and Corina S Păsăreanu.
Poster: AFL-based fuzzing for java with kelinci. In
Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pages 2511–
2513, 2017.

[27] Leonidas Lampropoulos, Diane Gallois-Wong, Cătălin
Hriţcu, John Hughes, Benjamin C. Pierce, and Li-yao
Xia. Beginner’s luck: a language for property-based
generators. In Proceedings of the ACM SIGPLAN Sympo-
sium on Principles of Programming Languages, POPL,
2017.

[28] Leonidas Lampropoulos, Zoe Paraskevopoulou, and Ben-
jamin C. Pierce. Generating good generators for induc-
tive relations. In Proceedings ACM on Programming
Languages, 2(POPL), 2017.

[29] Leonidas Lampropoulos, Michael Hicks, and Benjamin C
Pierce. Coverage guided, property based testing. Pro-
ceedings of the ACM on Programming Languages, 3
(OOPSLA):1–29, 2019.

[30] William M McKeeman. Differential testing for software.
Digital Technical Journal, 10(1):100–107, 1998.

[31] Lambert Meertens. First steps towards the theory of rose
trees. CWI, Amsterdam, 1988.

[32] Michał Zalewski. American Fuzzy Lop: a security-
oriented fuzzer. http://lcamtuf.coredump.cx/afl/, 2010.

[33] Agustı́n Mista and Alejandro Russo. Generating random
structurally rich algebraic data type values. In Proceed-
ings of the 14th International Workshop on Automation
of Software Test, 2019.

[34] Agustı́n Mista, Alejandro Russo, and John Hughes.
Branching processes for quickcheck generators. In Pro-
ceedings of the ACM SIGPLAN International Symposium
on Haskell, 2018.

[35] Agustı́n Mista and Alejandro Russo. MUTAGEN: Re-
liable Coverage-Guided, Property-Based Testing using
Exhaustive Structure-Preserving Mutations (Replication
Package), 2022. URL https://doi.org/10.5281/zenodo.
7197927.

[36] Hoang Lam Nguyen and Lars Grunske. Bedivfuzz: Inte-
grating behavioral diversity into generator-based fuzzing.
In 2022 IEEE/ACM 44th International Conference on
Software Engineering (ICSE), pages 249–261, 2022. doi:
10.1145/3510003.3510182.

[37] Oulu University Secure Programming Group. A Crash
Course to Radamsa. https://github.com/aoh/radamsa,
2010.

[38] Rohan Padhye, Caroline Lemieux, Koushik Sen, Mike
Papadakis, and Yves Le Traon. Semantic fuzzing with
zest. In Proceedings of the 28th ACM SIGSOFT In-
ternational Symposium on Software Testing and Analy-
sis, ISSTA 2019, page 329–340, New York, NY, USA,
2019. Association for Computing Machinery. ISBN
9781450362245. doi: 10.1145/3293882.3330576.

[39] Michał Pałka, Koen Claessen, Alejandro Russo, and John
Hughes. Testing an optimising compiler by generating
random lambda terms. In The IEEE/ACM International
Workshop on Automation of Software Test (AST), 2011.

[40] Manolis Papadakis and Konstantinos Sagonas. A proper
integration of types and function specifications with
property-based testing. In Proceedings of the 10th ACM
SIGPLAN workshop on Erlang, pages 39–50, 2011.

[41] Árpád Perényi and Jan Midtgaard. Stack-driven program
generation of webassembly. In Asian Symposium on
Programming Languages and Systems, pages 209–230.
Springer, 2020.

[42] Ilya Rezvov. wasm: WebAssembly Language Toolkit and
Interpreter. https://hackage.haskell.org/package/wasm,
2018.

[43] Colin Runciman, Matthew Naylor, and Fredrik Lindblad.
Smallcheck and lazy smallcheck: automatic exhaustive
testing for small values. In ACM SIGPLAN Notices,
volume 44, pages 37–48. ACM, 2008.

[44] Andrei Sabelfeld and Andrew C. Myers. Language-
based information-flow security. IEEE Journal on Se-
lected Areas in Communications, 21(1):5–19, 2003. doi:
10.1109/JSAC.2002.806121.

[45] Robert Swiecki. Honggfuzz: A general-purpose,
easy-to-use fuzzer with interesting analysis options.
https://github.com/google/honggfuzz, 2010.

[46] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu.
Superion: Grammar-aware greybox fuzzing. In 2019
IEEE/ACM 41st International Conference on Software
Engineering (ICSE), pages 724–735. IEEE, 2019.

[47] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr.
Finding and understanding bugs in c compilers. In Pro-

ceedings of the 32nd ACM SIGPLAN conference on Pro-
gramming language design and implementation, pages

283–294, 2011.

