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ABSTRACT
Generating good random values described by algebraic data types
is often quite intricate. State-of-the-art tools for synthesizing ran-
dom generators serve the valuable purpose of helping with this
task, while providing different levels of invariants imposed over
the generated values. However, they are often not built for com-
posability nor extensibility, a useful feature when the shape of our
random data needs to be adapted while testing different properties
or sub-systems.

In this work, we develop an extensible framework for deriving
compositional generators, which can be easily combined in differ-
ent ways in order to fit developers’ demands using a simple type-
level description language. Our framework relies on familiar ideas
from the à la Carte technique for writing composable interpreters
in Haskell. In particular, we adapt this technique with the machin-
ery required in the scope of random generation, showing how con-
cepts like generation frequency or terminal constructions can also
be expresed in the same type-level fashion. We provide an imple-
mentation of our ideas, and evaluate its performance using real-
world examples.
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1 INTRODUCTION
Random property-based testing is a powerful technique for find-
ing bugs [1, 10, 11, 16]. In Haskell, QuickCheck is the predominant
tool for this task [2]. The developers specify (i) the testing proper-
ties their systems must fulfill, and (ii) random data generators (or
generators for short) for the data types involved at their properties.
Then, QuickCheck generates random values, and uses them to eval-
uate the testing properties in search of possible counterexamples,
which always indicate the presence of bugs, either in the program
or in the specification of our properties.

Although QuickCheck provides default generators for the com-
mon base types, like Int or String, it requires implementing gen-
erators for any user-defined data type we want to generate. This
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process is cumbersome and error prone, and commonly follows
closely the shape of our data types. Fortunately, there exists a vari-
ety of tools helping with this task, providing different levels of in-
variants on the generated values as well as automation [6, 8, 14, 18].
We divide the different approaches in two kinds: those which are
manual, where generators are often able to enforce a wide-range
of invariants on the generated data, and those which are automatic
where the generators can only guarantee lightweight invariants
like generating well-typed values.

On the manual side, Luck [14] is a domain-specific language
for manually writing testing properties and random generators
in tandem. It allows obtaining generators specialized to produce
random data which is proven to satisfy the preconditions of their
corresponding properties. In contrast, on the automatic side, tools
like MegaDeTH [8, 9], DRAGEN [18] and Feat [6] allow obtaining
random generators automatically at compile time. MegaDeTH and
DRAGEN derive random generators following a simple recipe: to
generate a value, they simply pick a random data constructor from
our data type with a given probability, and proceed to generate the
required sub-terms recursively.MegaDeTH pays no attention to the
generation frequencies, nor the distribution induced by the derived
generator—it just picks among data constructors with uniform
probability. Differently, DRAGEN analyzes type definitions, and
tunes the generation frequencies to match the desired distribution
of random values specified by developers. Finally, Feat relies on
functional enumerations, deriving random generators which sample
random values uniformly across the whole search space of values
of up to a given size of the data type under consideration. In this
work, we focus on automatic approaches to derive generators.

While MegaDeTH, DRAGEN, and Feat provide a useful mecha-
nism for automating the task of writing random generators by hand,
they implement a derivation procedure which is often too generic
to synthesize useful generators in common scenarios, mostly be-
cause they only consider the structural information encoded in type
definitions. To illustrate this point, consider the following type defi-
nition encoding basic HTML pages—inspired by the widely used
html package:1

data Html =

Text String

| Sing String

| Tag String Html

| Html :+ : Html

This type allows building HTML pages via four possible data con-
structors: Text is used for plain text values; Sing and Tag repre-
sent singular and paired HTML tags, respectively; whereas the in-
fix (:+ :) constructor simply concatenates two HTML pages one

1http://hackage.haskell.org/package/html

http://hackage.haskell.org/package/html
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after another. Note that the constructors Tag and (:+ :) are recur-
sive, as they have at least one field of type Html. Then, the example
page <html>hi<br><b>bye</b></html> can be encoded with the
following Html value:

Tag "html" (Text "hi" :+ : Sing "br" :+ : Tag "b" (Text "bye"))

In this work, we focus on two scenarios where deriving gener-
ators following only the information extracted from type defini-
tions does not work well. The first case is when type definitions
are too general (like the case of Html) where, as consequence, the
generation process leaves a large room for ill-formed values, e.g.,
invalid HTML pages. For instance, when generating an Html value
using the Sing constructor, it is very likely that an automatically
derived generator will choose a random string not corresponding
to any valid HTML singular tag. In such situations, a common prac-
tice is to rely on existing abstract interfaces to generate random
values—such interfaces are often designed to preserve our desired
invariants. As an example, consider that our Html data type comes
equipped with the following abstract interface:

br :: Html
bold :: Html→ Html

list :: [Html] → Html

(⟨+⟩) :: Html→ Html→ Html

These high-level combinators let us represent structured HTML
constructions like line breaks (br), bold blocks (bold), unordered
lists (list) and concatenation of values one below another (⟨+⟩).
This methodology of generating random data employing high-level
combinators has shown to be particularly useful in the presence of
monadic code [3, 9].

The second scenario that we consider is that where derived gen-
erators fails at producing very specific patterns of values which
might be needed to trigger bugs. For instance, a function for sim-
plifying Html values might be defined to branch differently over
complex sequences of Text and (:+ :) constructors:

simplify :: Html→ Html

simplify (Text t1 :+ : Text t2) = · · ·

simplify (Text t :+ : x :+ : y) = · · ·
simplify · · · = · · ·

(Symbol · · · denote code that is not relevant for the point being
made.) Generating values that match, for instance, the pattern
Text t :+ : x :+ : y using DRAGEN under an uniform distribution
will only occur 6% of the times! Clearly, these input pattern match-
ings should be included as well into our generators, allowing them
to produce random values satisfying such inputs. This structural in-
formation can help increasing the chances of reaching portions of
our code which otherwise would be very difficult to test. Functions
pattern matchings often expose interesting relationships between
multiple data constructors, a valuable asset for testing complex sys-
tems expecting highly structured inputs [13].

Our previous work [17] focuses on extending DRAGEN ’s gen-
erators as well as its predictive approach to include all these extra
sources of structural information, namely high-level combinators
and functions’ input patterns, while allowing tuning the generation
parameters based on the developers’ demands. In turn, this work fo-
cuses on an orthogonal problem: that of modularity. In essence, all

(a) Machinery derivation

derive [constructors ′′Html

, interface ′′Html

, patterns ′simplify]

(b) Generators specification

type Htmlvalid =
Con "Text" ⊗ 2

⊕ Con ":+:" ⊗ 4

⊕ Fun "hr" ⊗ 3

⊕ Fun "bold" ⊗ 2

⊕ Fun "list" ⊗ 3

⊕ Fun "<+>" ⊗ 5

type Htmlsimplify =
Con "Text" ⊗ 2

⊕ Con "Sing" ⊗ 1

⊕ Con "Tag" ⊗ 3

⊕ Con ":+:" ⊗ 4

⊕ Pat "simplify" 1 ⊗ 3

⊕ Pat "simplify" 2 ⊗ 5

genHtmlvalid = genRep @Htmlvalid
genHtmlsimplify = genRep @Htmlsimplify

Figure 1: Usage example of our framework. Two random
generators obtained from the same underlying machinery.

the automatic tools cited above work by synthesizing rigid mono-
lithic generator definitions. Once derived, these generators have
almost no parameters available for adjusting the shape of our ran-
dom data. Sadly, this is something we might want to do if we need
to test different properties or sub-systems using random values
generated in slightly different ways. As the reader might appreci-
ate, it can become handy to cherry pick, for each situation, which
data constructors, abstract interfaces functions, or functions’ input
patterns to consider when generating random values.

The contribution of this work is an automated framework for
synthesizing compositional random generators, which can be natu-
rally extended to include the extra sources of structural information
mentioned above. Using our approach, a user can obtain random
generators following different generation specifications whenever
necessary, all of them built upon the same underlying machinery
which only needs to be derived once.

Figure 1 illustrates a possible usage scenario of our approach.
We first invoke a derivation procedure (1a) to extract the struc-
tural information of the type Html encoded on (i) its data con-
structors, (ii) its abstract interface, and (iii) the patterns from the
function simplify. Then, two different generation specifications,
namely Htmlvalid and Htmlsimplify can be defined using a sim-
ple type-level idiom (1b). Each specification mentions the differ-
ent sources of structural information to consider, along with (per-
haps) their respective generation frequency. Intuitively, Htmlvalid
chooses among the constructors Text and :+ : , as well as func-
tions from Html’s abstract interface; while Htmlsimplify chooses
among all Html’s constructors and the patterns of the first and sec-
ond clauses in the function simplify. The syntax used there will
be addressed in detail in Sections 3 to 5. Finally, we obtain two con-
crete random generators following such specifications by writing
genRep @Htmlvalid and genRep @Htmlsimplify, respectively.

The main contribution of this paper are:
• We present an extensible mechanism for representing random
values built upon different sources of structural information,
adopting ideas from Data Types à la Carte [24] (Section 3).
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• We develop a modular generation scheme, extending our repre-
sentation to encode information relevant to the generation pro-
cess at the type level (Section 4).
• We propose a simple type-level idiom for describing extensible
generators, based on the types used to represent the desired
shape of our random data (Section 5).
• We provide a Template Haskell tool2 for automatically deriving
all the required machinery presented throughout this paper, and
evaluate its generation performance with three real-world case
studies and a type-level runtime optimization (Section 6).

Overall, we present a novel technique for reusing automatically
derived generators in a composable fashion, in contrast to the usual
paradigm of synthesizing rigid, monolithic generators.

2 RANDOM GENERATORS IN HASKELL
In this section, we introduce the common approach for writing
random generators in Haskell using QuickCheck, along with the
motivation for including extra information into our generators,
discussing how this could be naively implemented in practice.

In order to provide a common interface for writing generators,
QuickCheck uses Haskell’s overloading mechanism known as type
classes [26], defining the Arbitrary class for random generators as:

class Arbitrary a where
arbitrary :: Gen a

where the overloaded symbol arbitrary ::Gen a denotes a monadic
generator for values of type a. Using this mechanism, a user can de-
fine a sensible random generator for our Html data type as follows:

instance Arbitrary Html where
arbitrary = sized gen

where gen 0 = frequency

[(2, Text ⟨$⟩ arbitrary)
, (1, Sing ⟨$⟩ arbitrary)]

gen d = frequency

[(2, Text ⟨$⟩ arbitrary)
, (1, Sing ⟨$⟩ arbitrary)
, (4, Tag ⟨$⟩ arbitrary ⟨∗⟩ gen (d-1))
, (3, (:+ :) ⟨$⟩ gen (d-1) ⟨∗⟩ gen (d-1))]

At the top level, this definition parameterizes the generation pro-
cess using QuickCheck’s sized combinator, which lets us build our
generator via an auxiliary, locally defined function gen :: Int →
Gen Html. The Int passed to gen is known as the generation size, and
is threaded seamlessly by QuickCheck on each call to arbitrary.
We use this parameter to limit the maximum amount of recursive
calls that our generator can perform, and thus the maximum depth
of the generated values. If the generation size is positive (case gen d),
our generator picks a random Html constructor with a given gener-
ation frequency (denoted here by the arbitrarily chosen numbers 2,
1, 4 and 3) using QuickCheck’s frequency combinator. Then, our
generator proceeds to fill its fields using randomly generated sub-
terms—here using Haskell’s applicative notation [15] and the de-
fault Arbitrary instance for Strings. For the case of the recursive
sub-terms, this generator simply calls the function gen recursively

2Available at https://github.com/OctopiChalmers/dragen2

with a smaller depth limit (gen (d-1)). This process repeats until
we reach the base case (gen 0) on each recursive sub-term. At this
point, our generator is limited to pick only among terminal Html
constructors, hence ending the generation process.

As one can observe, the previous definition is quite mechanical,
and depends only on the generation frequencies we choose for each
constructor. This simple generation procedure is the one used by
tools like MegaDeTH or DRAGEN when synthesizing generators.

2.1 Abstract Interfaces
A common choice when implementing abstract data types is to
transfer the responsibility of preserving their invariants to the
functions on their abstract interface. Take for example our Html data
type. Instead of defining a different constructor for each possible
HTML construction, we opted for a small generic representation
that can be extended with a set of high-level combinators:

br :: Html
br = Sing "br"

bold :: Html→ Html

bold = Tag "b"

list :: [Html] → Html

list [ ] = Text "empty list"

list xs = Tag "ul" (foldl1 (:+ :) (Tag "li" ⟨$⟩ xs))
(⟨+⟩) :: Html→ Html→ Html

(⟨+⟩) x y = x :+ : br :+ : y

Note how difficult it would be to generate random values containing,
for example, structurally valid HTML lists, if we only consider the
structural information encoded in our Html type definition. After
all, much of the valid structure of HTML has been encoded on its
abstract interface.

A synthesized generator could easily contemplate this structural
information by creating random values arising from applying such
functions to randomly generated inputs:

instance Arbitrary Html where
arbitrary = · · ·

frequency

[...

, (1, pure br)

, (5, bold ⟨$⟩ gen (d-1))
, (2, list ⟨$⟩ listOf (gen (d-1)))
, (3, (⟨+⟩) ⟨$⟩ gen (d-1) ⟨∗⟩ gen (d-1))]

where (...) represents the rest of the code of the random genera-
tor introduced before. From now on, we will refer to each choice
given to the frequency combinator as a different random construc-
tion, since we are not considering generating only single data con-
structors anymore, but more general value fragments.

2.2 Functions’ Pattern Matchings
A different challenge appears when we try to test functions involv-
ing complex pattern matchings. Consider, for instance, the full defi-
nition of the function simplify introduced in Section 1:

https://github.com/OctopiChalmers/dragen2
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simplify :: Html→ Html

simplify (Text t1 :+ : Text t2) = Text (t1 ++ t2)

simplify (Text t :+ : x :+ : y) =
simplify (Text t :+ : simplify (x :+ : y))

simplify (x :+ : y) = simplify x :+ : simplify y

simplify (Tag t x) = Tag t (simplify x)

simplify x = x

This function traverses Html values, joining together every con-
tiguous pair of Text constructors. Ideally, we would like to put ap-
proximately the same testing effort into each clause of simplify,
or perhaps even more to the first two ones, since those are the ones
performing actual simplifications. However, these two clauses are
the most difficult ones to test in practice! The probability of gen-
erating a random value satisfying nested patterns decreases mul-
tiplicatively with the number of constructors we simultaneously
pattern match against. In our tests, we were not able to exercise
any of these two patterns more than 6% of the overall testing time,
using random generators derived using both MegaDeTH and DRA-
GEN. As expected, most of the random test cases were exercising
the simplest (and rather uninteresting) patterns of this function.

To solve this issue, we could opt to consider each complex pat-
tern as a new kind of random construction. In this light, we can
simply generate values satisfying patterns directly by returning
their corresponding expressions, where each variable or wildcard
pattern is filled using a random sub-expression:

instance Arbitrary Html where
arbitrary = · · ·

frequency

[...

, (2, do t1 ← arbitrary ; t2 ← arbitrary;
return (Text t1 :+ : Text t2))

, (4, do t← arbitrary ; x← gen (d-1) ; y← gen (d-1);
return (Text t :+ : x :+ : y))]

While the ideas presented in this section are plausible, accumu-
lating cruft from different sources of structural information into
a single, global Arbitrary instance is unwieldy, especially if we
consider that some random constructions might not be relevant or
desired in many cases, e.g., generating the patterns of the function
simplify might only be useful when testing properties involving
such function, and nowhere else.

In contrast, the following sections of this paper present our ex-
tensible approach for deriving generators, where the required ma-
chinery is derived once, and each variant of our random generators
is expressed on a per-case basis.

3 MODULAR RANDOM CONSTRUCTIONS
This section introduces a unified representation for the different
constructions we might want to consider when generating random
values. The key idea of this work is to lift each different source
of structural information to the type level. In this light, the shape
of our random data is determined entirely by the types we use to
represent it during the generation process.

For this purpose, we will use a set of simple “open” representa-
tion types, each one encoding a single random construction from

our target data type, i.e., the actual data type we want to randomly
generate. These types can be (i) combined in several ways depend-
ing on the desired shape of our test data (applying the familiar à la
Carte technique); (ii) randomly generated (see Section 4); and finally,
(iii) transformed to the corresponding values of our target data type
automatically. This representation can be automatically derived
from our source code at compile time, relieving programmers of
the burden of manually implementing the required machinery.

3.1 Representing Data Constructors
When generating values of algebraic data types, the simplest piece
of meaningful information we ought to consider is the one given by
each one of its constructors. In this light, each constructor of our
target type can be represented using a single-constructor data type.
Recalling our Html example, its constructors can be represented as:

data ConText r = MkText String

data ConSing r = MkSing String

data ConTag r = MkTag String r

data Con(:+:) r = Mk(:+:) r r

Each representation type has the same fields as its corresponding
constructor, except for the recursive ones which are abstracted
away using a type parameter r. This parametricity lets us leave
the type of recursive sub-terms unspecified until we have decided
the final shape of our random data. Then, for instance, the value
MkTag "div" x :: ConTag r represents the Html value Tag "div" x,
for some sub-term x :: r that can be transformed to Html as well.
Note how these representations types encode the minimum amount
of information they need, leaving everything else unspecified.

An important property of these parametric representations is
that, in most cases, they form a functor over its type parameter,
thus we can use Haskell’s deriving mechanism to obtain suitable
Functor instances for free—this will be useful for the next steps.

The next building block of our approach consists of providing a
mapping from each constructor representation to its corresponding
target value, provided that each recursive sub-term has already been
translated to its corresponding target value. This notion is often
referred as an F-Algebra over the functor used to represent each
different construction. Accordingly, to represent this mapping, we
will define a type class Algebrawith a single method alg as follows:

class Functor f⇒ Algebra f a | f→ a where
alg :: f a→ a

where f is the functor type used to represent a construction of the
target type a. The functional dependency f → a helps the type
system to solve type of the type variable a, which appears free on
the right hand side of the⇒. This means that, every representation
type f will uniquely determine its target type a. Then, we need to
instantiate this type class for each data constructor representation
we are considering, providing an appropriate implementation for
the overloaded alg function:

instance Algebra ConText Html where
alg (MkText x) = Text x

instance Algebra ConSing Html where
alg (MkSing x) = Sing x
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instance Algebra ConTag Html where
alg (MkTag t x) = Tag t x

instance Algebra Con(:+:) Html where
alg (Mk(:+:) x y) = x :+ : y

There, we simply transform each constructor representation into
its corresponding data constructor, piping its fields unchanged.

3.2 Composing Representations
So far we have seen how to represent each data constructor of our
Html data type independently. In order to represent interesting val-
ues, we need to be able to combine single representations into (possi-
bly complex) composite ones. For this purpose, wewill define a func-
tor type ⊕ to encode the choice between two given representations:

data ((f :: ∗ → ∗) ⊕ (g :: ∗ → ∗)) r = InL (f r) | InR (g r)

This infix type-level operator let us combine two representations f
and g into a composite one f ⊕ g, encoding either a value drawn
from f (via the InL constructor) or a value drawn from g (via the InR
constructor). This operator works pretty much in the same way as
Haskell’s Either data type, except that, instead of combining two
base types, it works combining two parametric type constructors,
hence the kind signature ∗ → ∗ in both f and g. For instance, the
type ConText⊕ConTag encodes values representing either plain text
HTMLs or paired tags. Such values can be constructed using the
injections InL and InR on each case, respectively.

The next step consists of providing a mapping from composite
representations to target types, provided that each component of
can be translated to the same target type:

instance (Algebra f a, Algebra g a) ⇒ Algebra (f ⊕ g) a where
alg (InL fa) = alg fa

alg (InR ga) = alg ga

There, we use the appropriate Algebra instance of the inner repre-
sentation, based on the injection used to create the composite value.

Worth remarking, the order in which we associate each operand
of ⊕ results semantically irrelevant. However, in practice, associa-
tivity takes as dramatic role when it comes to generation speed.
This phenomenon is addressed in detail in Section 6.

3.3 Tying the Knot
Even though we have already seen how to encode single and com-
posite representations for our target data types, there is a piece of
machinery still missing: our representations are not recursive, but
parametric on its recursive fields. We can think of them as a encod-
ing a single layer of our target data. In order to represent recursive
values, we need to close them tying the knot recursively, i.e., once
we have fixed a suitable representation type for our target data,
each one of its recursive fields has to be instantiated with itself. This
can be easily achieved by using a type-level fixed point operator:

data Fix (f :: ∗ → ∗) = Fix {unFix :: f (Fix f)}

Given a representation type f of kind ∗ → ∗, the type Fix f instan-
tiates each recursive field of f with Fix f, closing the definition of
f into itself—thus the kind of Fix f results ∗.

In general, if a type f is used to represent a given target type,
we will refer to Fix f as a final representation, since it cannot be

further combined or extended—the ⊕ operator has to be applied
within the Fix type constructor.

The effect of a fixed point combinator is easier to interpret with
an example. Let us imagine we want to represent our Html data type
using all of its data constructors, employing the following type:

type Html’ = ConText ⊕ ConSing ⊕ ConTag ⊕ Con(:+:)

Then, for instance, the value x = Text "hi" :+ : Sing "hr" :: Html
can be represented with a value x’ :: Fix Html’ as:

x’ = Fix (InR (InR (InR (Mk(:+:)
(Fix (InL (MkText "hi")))

(Fix (InR (InL (MkSing "hr"))))))))

where the sequences of InL and InR data constructors inject each
value from an individual representation into the appropriate posi-
tion of our composite representation Html’.

Finally, we can define a generic function eval to evaluate any
value of a final representation type Fix f into its corresponding
value of the target type a as follows:

eval :: Algebra f a⇒ Fix f→ a

eval = alg ◦ fmap eval ◦ unFix

This function exploits the Functor structure of our representations,
unwrapping the fixed points and mapping their algebras to the
result of evaluating recursively each recursive sub-term.

In our particular example, this function satisfies eval x’ == x.
More specifically, the types Html and Fix Html’ are in fact isomor-
phic, with eval as the witness of one side of this isomorphism—
though this is not the case for any arbitrary representation.

3.4 Representing Additional Constructions
The representation mechanism we have developed so far let us
determine the shape of our target data based on the type we use to
represent its constructors. However, it is hardly useful for random
testing, as the values we can represent are still quite unstructured.
It is not until we start considering more complex constructions that
this approach becomes particularly appealing.

3.4.1 Abstract Interfaces. Let us consider the case of generating
values obtained by abstract interface functions. If we recall our Html
example, the functions on its abstract interface can be used to obtain
Html values based on different input arguments. Fortunately, it is
easy to extend our approach to incorporate the interesting structure
arising from these functions into our framework. As before, we
start by defining a set of open data types to encode each function
as a random construction:

data Funbr r = Mkbr
data Funbold r = Mkbold r

data Funlist r = Mklist [r]

data Fun⟨+⟩ r = Mk⟨+⟩ r r

Each data type represents a value resulting from evaluating its cor-
responding function, using the values encoded on its fields as input
arguments. Once again, we replace each recursive field (represent-
ing a recursive input argument) with a type parameter r in order
to leave the type of the recursive sub-terms unspecified until we
have decided the final shape of our data.
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By representing values obtained from function application this
way, we are not performing any actual computation—we simply
store the functions’ input arguments. Instead, these functions are
evaluated when transforming each representation into its target
type, by the means of an Algebra:

instance Algebra Funbr Html where
alg Mkbr = br

instance Algebra Funbold Html where
alg (Mkbold x) = bold x

instance Algebra Funlist Html where
alg (Mklist xs) = list xs

instance Algebra Fun⟨+⟩ Html where
alg (Mk⟨+⟩ x y) = x⟨+⟩y

Where we simply return the result of evaluating each corresponding
function, using its representation fields as an input arguments.

It is important to remark that this approach inherits any possible
downside from the functions we use to represent our target data. In
particular, representing non-terminating functions might produce
a non-terminating behavior when calling to the eval function.

3.4.2 Functions’ Pattern Matchings. The second source of struc-
tural information that we consider in this work is the one present
in functions’ pattern matchings. If we recall to our simplify func-
tion, we can observe it has two complex, non-trivial patterns that
we might want to satisfy when generating random values. We can
extend our approach in order to represent these patterns as well.
We start by defining data types for each one of them, this time using
the fields of each single data constructor to encode the free pattern
variables (or wildcards) appearing on its corresponding pattern:

data Patsimplify#1 r = Mksimplify#1 String String

data Patsimplify#2 r = Mksimplify#2 String r r

where the number after the # distinguishes the different patterns
from the function simplify by the index of the clause they belong
to. As before, we abstract away every recursive field (corresponding
to a recursive pattern variable or wildcard) with a type variable r.

Then, the Algebra instance of each pattern will expand each
representation into the corresponding target value resembling such
pattern, where each pattern variable gets instantiated using the
values stored in its representation field:

instance Algebra Patsimplify#1 Html where
alg (Mksimplify#1 t1 t2) = Text t1 :+ : Text t2

instance Algebra Patsimplify#2 Html where
alg (Mksimplify#1 t x y) = Text t :+ : x :+ : y

3.5 Lightweight Invariants for Free!
Using themachinery presented so far, we can represent values of our
target data coming from different sources of structural information
in a compositional way.

Using this simple mechanism we can obtain values exposing
lightweight invariants very easily. For instance, a value of type
Htmlmight encode invalid HTML pages if we construct them using
invalid tags in the process (via the Sing or Tag constructors). To
avoid this, we can explicitly disallow the direct use of the Sing and

Tag constructors, replacing them with safe constructions from its
abstract interface. In this light, a value of type:

ConText ⊕ Con(:+:) ⊕ Funbr ⊕ Funbold ⊕ Funlist ⊕ Fun⟨+⟩

always represents a valid HTML page.
Similarly, we can enforce that every Text constructor within a

value will always appear in pairs of two, by using the following type:

ConSing ⊕ ConTag ⊕ Con(:+:) ⊕ Patsimplify#1

Since the only way to place a Text constructor within a value of this
type is via the construction Patsimplify#1, which always contains
two consecutive Texts.

As a consequence, generating random data exposing such invari-
ants will simply become using an appropriate representation type
while generating random values, without having to rely on runtime
reinforcements of any sort. The next section introduces a generic
way to generate random values from our different representations,
extending them with a set of combinators to encode information
relevant to the generation process directly at the type level.

4 GENERATING RANDOM CONSTRUCTIONS
So far we have seen how to encode different random constructions
representing interesting values from our target data types. Such rep-
resentations follow a modular approach, where each construction is
independent from the rest. This modularity allows us to derive each
different construction representation individually, as well to spec-
ify the shape of our target data in simple and extensible manner.

In this section, we introduce the machinery required to randomly
generate the values encoded using our representations. This step
also follows the modular fashion, resulting in a random generation
process entirely compositional. In this light, our generators are
built from simpler ones (each one representing a single random
construction), and are solely based on the types we use to represent
the shape of our random data.

Ideally, our aim is to be able to obtain random generators with
a behavior similar to the one presented for Html in Section 2. If
we take a closer look at its definition, there we can observe three
factors happening simultaneously:

• We use QuickCheck’s generation size to limit the depth of the
generated values, reducing it by one on each recursive call of
the local auxiliary function gen.
• We differentiate between terminal and non-terminal (i.e. recur-
sive) constructors, picking only among terminal ones when we
have reached the maximum depth (case gen 0).
• We generate different constructions in a different frequency.
For the rest of this section, we will focus on modeling these aspects
in our modular framework, in such a way that does not compromise
the compositionality obtained so far.

4.1 Depth-Bounded Modular Generators
The first obstacle that arises when trying to generate random values
with a limited depth using our approach is related to modularity.
If we recall the random generator for Html from Section 2 we can
observe that the depth parameter d is threaded to the different
recursive calls of our generator, always within the scope of the
local function gen. Since each construction will have an specialized
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random generator, we cannot group them as we did before using
an internal gen function. Instead, we will define a new type for
depth-bounded generators, wrapping QuickCheck’s Gen type with
an external parameter representing the maximum recursive depth:

type BGen a = Int→ Gen a

A BGen is, essentially, a normal QuickCheck Gen with the maximum
recursive depth as an input parameter. Using this definition, we
can generalize QuickCheck’s Arbitrary class to work with depth-
bounded generators simply as follows:

class BArbitrary (a :: ∗) where
barbitrary :: BGen a

From now on, we will use this type class as a more flexible
substitute of Arbitrary, given that nowwe have two parameters to
tune: the maximum recursive depth, and theQuickCheck generation
size. The former is useful for tuning the overall size of our random
data, whereas the latter can be used for tuning the values of the
leaf types, such as the maximum length of the random strings or
the biggest/smallest random integers.

Here we want to remark that, even though we could have used
QuickCheck’s generation size to simultaneously model the maxi-
mum recursive depth and the maximum size of the leaf types, doing
so would imply generating random values with a decreasing size as
we move deeper within a random value, obtaining for instance, ran-
dom trees with all zeroes on its leaves, or random lists skewed to
be ordered in decreasing order. In addition, one can always obtain a
trivial Arbitrary instance from a BArbitrary one, by setting the
maximum depth to be equal to QuickCheck’s generation size:

instance BArbitrary a⇒ Arbitrary a where
arbitrary = sized barbitrary

Even though this extension allows QuickCheck generators to be
depth-aware, here we also need to consider the parametric nature
of our representations. In the previous section, we defined each
construction representation as being parametric on the type of its
recursive sub-terms, as a way to defer this choice until we have
specified the final shape of our target data. Hence, each construction
representation is of kind ∗ → ∗. If we want to define our generators
in a modular way, we also need to parameterize somehow the
generation of the recursive sub-terms! If we look at QuickCheck,
this library already defines a type class Arbitrary1 for parametric
types of kind ∗ → ∗, which solves this issue by receiving the
generator for the parametric sub-terms as an argument:

class Arbitrary1 (f :: ∗ → ∗) where
liftArbitrary :: Gen a→ Gen (f a)

Then, we can use this same mechanism for our modular generators,
extending Arbitrary1 to be depth-aware as follows:

class BArbitrary1 (f :: ∗ → ∗) where
liftBGen :: BGen a→ BGen (f a)

Note the similarities between Arbitrary1 and BArbitrary1. We
will use this type class to implement random generators for each
construction we are automatically deriving. Recalling our Html ex-
ample, we can define modular random generators for the construc-
tions representing its data constructors as follows:

instance BArbitrary1 ConText where
liftBGen bgen d = MkText ⟨$⟩ arbitrary

instance BArbitrary1 ConSing where
liftBGen bgen d = MkSing ⟨$⟩ arbitrary

instance BArbitrary1 ConTag where
liftBGen bgen d = MkTag ⟨$⟩ arbitrary ⟨∗⟩ bgen (d-1)

instance BArbitrary1 Con(:+:) where
liftBGen bgen d = Mk(:+:) ⟨$⟩ bgen (d-1) ⟨∗⟩ bgen (d-1)

Note how each instance is defined to be parametric of the maximum
depth (using the input integer d) and of the random generator used
for the recursive sub-terms (using the input generator bgen). Every
other non-recursive sub-term can be generated using a normal
Arbitrary instance—we use this to generate random Strings in
the previous definitions.

The rest of our representations can be generated analogously. For
example, the BArbitrary1 instances for Funbold and Patsimplify#2
are as follows:

instance BArbitrary1 Funbold where
liftBGen bgen d = Mkbold ⟨$⟩ bgen (d-1)

instance BArbitrary1 Patsimplify#2 where
liftBGen bgen d =

Mksimplify#2 ⟨$⟩ arbitrary ⟨∗⟩ bgen (d-1) ⟨∗⟩ bgen (d-1)

Then, having the modular generators for each random construc-
tion in place, we can obtain a concrete depth-aware generator (of
kind ∗) for any final representation Fix f as follows:

instance BArbitrary1 f⇒ BArbitrary (Fix f) where
barbitrary d = Fix ⟨$⟩ liftBGen barbitrary d

There, we use the BArbitrary1 instance of our representation f to
generate sub-terms recursively by lifting itself as the parameterized
input generator (liftBGen barbitrary), wrapping each recursive
sub-term with a Fix data constructor.

The machinery developed so far lets us generate single random
constructions in a modular fashion. However, we still need to de-
velop our generation mechanism a bit further in order to generate
composite representations built using the ⊕ operator. This is the
objective of the next sub-section.

4.2 Encoding Generation Behavior Using Types
As we have seen so far, generating each representation is rather
straightforward: there is only one data constructor to pick, and ev-
ery field is generated using a mechanical recipe. In our approach,
most of the generation complexity is encoded in the random genera-
tor for composite representations, built upon the ⊕ operator. Before
introducing it, we need to define some additional machinery to en-
code the notions of terminal construction and generation frequency.

Recalling the random generator for Html presented in Section
2, we can observe that the last generation level (see gen 0) is con-
strained to generate values only from the subset of terminal con-
structions. In order to model this behavior, we will first define a
data type Term to tag every terminal construction explicitly:

data Term (f :: ∗ → ∗) r = Term (f r)
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Then, if f is a terminal construction, the type Term f ⊕ g can
be interpreted as representing data generated using values drawn
both from f and g, but closed using only values from f. Since this
data type will not add any semantic information to the represented
values, we can define suitable Algebra and BArbitrary1 instances
for it simply by delegating the work to the inner type:

instance Algebra f a⇒ Algebra (Term f) a where
alg (Term f) = alg f

instance BArbitrary1 f⇒ BArbitrary1 (Term f) where
liftBGen bgen d = Term ⟨$⟩ liftBGen bgen d

Worth mentioning, our approach does not requires the final
user to manually specify terminal constructions—a repetitive task
which might lead to obscure non-termination errors if a recursive
construction is wrongly tagged as terminal. In turn, this information
can be easily extracted at derivation time and included implicitly
in our refined type-level idiom, described in detail in Section 5.

The next building block of our framework consists in a way of
specifying the generation frequency of each construction. For this
purpose, we can follow the same reasoning as before, defining a
type-level operator ⊗ to explicitly tag the generation frequency of
a given representation:

data ((f :: ∗ → ∗) ⊗ (n :: Nat)) r = Freq (f r)

This operator is parameterized by a type-level natural number n
(of kind Nat) representing the desired generation frequency. In this
light, the type (f⊗3)⊕(g⊗1) represents data generated using values
from both f and g, where f is randomly chosen three times more
frequently than g. In practice, we defined ⊗ such that it associates
more strongly than ⊕, thus avoiding the need of parenthesis in types
like the previous one. Analogously as Term, the operator ⊗ does
not add any semantic information to the values it represents, so we
can define its Algebra and BAbitrary1 instance by delegating the
work to the inner type as before:

instance Algebra f a⇒ Algebra (f ⊗ n) a where
alg (Freq f) = alg f

instance BArbitrary1 f⇒ BArbitrary1 (f ⊗ n) where
liftBGen bgen d = Freq ⟨$⟩ liftBGen bgen d

With these two new type level combinators, Term and ⊗, we are
now able to express the behavior of our entire generation process
based solely on the type we are generating.

In addition to these combinators, we will need to perform some
type-level computations based on them in order to define our ran-
dom generator for composite representations. Consider for instance
the following type—expressed using parenthesis for clarity:

(f ⊗ 2) ⊕ ((g ⊗ 3) ⊕ (Term h ⊗ 5))

Our generation process will traverse this type one combinator at a
time, processing each occurrence of ⊕ independently. This means
that, in order to select the appropriate generation frequency of each
operand we need to calculate the overall sum of frequencies on
each side of the ⊕. For this purpose, we rely on Haskell’s type-level
programming feature known as type families [23]. In this light, we
can implement a type-level function FreqOf to compute the overall
sum of frequencies of a given representation type:

type family FreqOf (f :: ∗ → ∗) :: Nat where
FreqOf (f ⊕ g) = FreqOf f + FreqOf g

FreqOf (f ⊗ n) = n ∗ FreqOf f

FreqOf (Term f) = FreqOf f

FreqOf = 1

This type-level function takes a representation type as an input
and traverses it recursively, adding up each frequency tag found in
the process, and returning a type-level natural number. Note how
in the second equation we multiply the frequency encoded in the
⊗ tag with the frequency of the type it is wrapping. This way, the
type ((f ⊗ 2) ⊕ g) ⊗ 3 is equivalent to (f ⊗ 6) ⊕ (g ⊗ 3), following
the natural intuition for the addition and multiplication operations
over natural numbers. Moreover, if a type does not have an explicit
frequency, then its generation frequency is defaulted to one.

Furthermore, the last step of our generation process, which only
generates terminal constructions, could be seen as considering the
non-terminal ones as having generation frequency zero. This way,
we can introduce another type-level computation to calculate the
terminal generation frequency FreqOfT of a given representation:

type family FreqOfT (f :: ∗ → ∗) :: Nat where
FreqOfT (f ⊕ g) = FreqOfT f + FreqOfT g

FreqOfT (f ⊗ n) = n ∗ FreqOfT f

FreqOfT (Term f) = FreqOf f

FreqOfT = 0

Similar to FreqOf, the type family above traverses its input type
adding the terminal frequency of each sub-type. However, FreqOfT
only considers the frequency of those representation sub-types that
are explicitly tagged as terminal, returning zero in any other case.

Then, using the Term and ⊗ combinators introduced at the be-
ginning of this sub-section, along with the previous type-level com-
putations over frequencies, we are finally in position of defining
our random generator for composite representations:

instance (BArbitrary1 f, BArbitrary1 g)

⇒ BArbitrary1 (f ⊕ g) where
liftBGen bgen d =

if d > 0

then frequency

[(freqVal @(FreqOf f), InL ⟨$⟩ liftBGen bgen d)

, (freqVal @(FreqOf g), InR ⟨$⟩ liftBGen bgen d)]

else frequency
[(freqVal @(FreqOfT f), InL ⟨$⟩ liftBGen bgen d)

, (freqVal @(FreqOfT g), InR ⟨$⟩ liftBGen bgen d)]

Like the generator for Html introduced in Section 2, this generator
branches over the current depth d. In the case we can still generate
values from any construction (d > 0), we will use QuickCheck’s
frequency operation to randomly choose between generating a
value of each side of the ⊕, i.e., either a value of f or a value of g,
following the generation frequencies specified for both of them,
and wrapping the values with the appropriate injection InL or InR
on each case. Such frequencies are obtained by reflecting the type-
level natural values obtained from applying FreqOf to both f and g,
using a type-dependent function freqVal that returns the number
corresponding to the type-level natural value we apply to it:
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freqVal :: ∀n . KnownNat n⇒ Int

Note that the type of freqVal is ambiguous, since it quantifies over
every possible known type-level natural value n. We use a visible
type application [7] (employing the @(...) syntax) to disambiguate
to which natural value we are actually referring to. Then, for in-
stance, the value freqVal @(FreqOf (f⊗ 5 ⊕ g⊗ 4)) evaluates to
the concrete value 9 :: Int.

The else clause of our random generator works analogously, ex-
cept that, this time we only want to generate terminal construc-
tions, hence we use the FreqOfT type family to compute the termi-
nal generation frequency of each operand. If any of FreqOfT f or
FreqOfT g evaluates to zero, it means that such operand does not
contain any terminal constructions, and frequency will not con-
sider it when generating terminal values.

Moreover, if it happens that both FreqOfT f and FreqOfT g com-
pute to zero simultaneously, then this will produce a runtime error
triggered by the function frequency, as it does not have anything
with a positive frequency to generate. This kind of exceptions will
arise, for example, if we forget to include at least one terminal con-
struction in our final representation—thus leaving the door open
for potential infinite generation loops. Fortunately, such runtime
exceptions can be caught at compile time. We can define a type
constraint Safe that ensures we are trying to generate values us-
ing a representation with a strictly positive terminal generation
frequency—thus containing at least a single terminal construction:

type family Safe (f :: ∗ → ∗) :: Constraint where
Safe f = IsPositive (FreqOfT f)

type family IsPositive (n :: Nat) :: Constraint where
IsPositive 0 = TypeError "No terminals"

IsPositive = ()

These type families compute the terminal generation frequency of
a representation type f, returning either a type error, if its result is
zero; or, alternatively, an empty constraint () that is always trivially
satisfied. Finally, we can use this constraint to define a safe genera-
tion primitive genRep to obtain a concrete depth-bounded genera-
tor for every target type a, specified using a “safe” representation f:

genRep :: ∀f a . (BArbitrary1 f, Safe f, Algebra f a) ⇒ BGen a

genRep d = eval ⟨$⟩ barbitrary @(Fix f) d

Note how this primitive is also ambiguous in the type used for the
representation. This allows us to use a visible type application to
obtain values from the same target type but generated using dif-
ferent underlying representations. For instance, we can obtain two
different concrete generators of our Html type simply by changing
its generation representation type as follows:

genHtmlvalid :: BGen Html

genHtmlvalid = genRep @Htmlvalid

genHtmlsimplify :: BGen Html

genHtmlsimplify = genRep @Htmlsimplify

where Htmlvalid and Htmlsimplify are the representations types
introduced in Figure 1b—the syntax used to define them is com-
pleted in the next section.

So far we have seen how to represent and generate values for
our target data type by combining different random constructions,

as well as a series of type-level combinators to encode the desired
generation behavior. The next section refines our type-level ma-
chinery in order to provide a simple idiom for defining composable
random generators.

5 TYPE-LEVEL GENERATION
SPECIFICATIONS

This section introduces refinements to our basic language for de-
scribing random generators, making it more flexible and robust in
order to fit real-world usage scenarios.

The first problem we face is that of naming conventions. In prac-
tice, the actual name usedwhen deriving the representation for each
random construction needs to be generated such that it complies
with Haskell’s syntax, and also that it is unique within our names-
pace. This means that, type names like Fun⟨+⟩ or Patsimplify#1
are, technically, not valid Haskell data type names, thus they will
have to be synthesized as something like Fun_lt_plus_gt_543
and Pat_simplify_1_325, where the last sequence of numbers is
inserted by Template Haskell to ensure uniqueness.

This naming convention results hard to use, specially if we con-
sider that we do not know the actual type names until they are
synthesized during compilation, due to their unique suffixes. Fortu-
nately, it is easy to solve this problem using some type-level ma-
chinery. Instead of imposing a naming convention in our deriva-
tion tool, we define a set of open type families to hide each kind of
construction behind meaningful names:

type family Con (c :: Symbol)
type family Fun (f :: Symbol)
type family Pat (p :: Symbol) (n :: Nat)

where Symbol is the kind of type-level strings in Haskell. Then,
our derivation process will synthesize each representation using
unique names, along with a type instance of the corresponding type
family, i.e., Con for data constructors, Fun for interface functions,
and Pat for functions’ patterns. For instance, along with the con-
structions representations ConText, Fun⟨+⟩ and Patsimplify#1, we
will automatically derive the following type instances:

type instance Con "Text" = Term Con_Text_123

type instance Fun "<+>" = Fun_lt_plus_gt_543

type instance Pat "simplify" 1 = Term Pat_simplify_1_325

As a result, the end user can simply refer to each particular con-
struction by using these synonyms, e.g., with representation types
like Con "Text" ⊕ Fun "<+>". The additional Nat type parameter
on Pat simply identifies each pattern number uniquely.

Moreover, notice how we include the appropriate Term tags for
each terminal construction automatically—namely Con "Text" and
Pat "simplify" 1 in the example above. Since this information is
statically available, we can easily extract it during derivation time.
This relieves us of the burden of manually identifying and declar-
ing the terminal constructions for every generation specification
Additionally, it helps ensuring the static termination guarantees
provided by our Safe constraint mechanism.

Using the type-level extension presented so far, we are now able
to write the generation specifications presented in Figure 1b in a
clear and concise way.
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5.1 Parametric Target Data Types
So far we have seen how to specify random generators for our
simple self-contained Html data type. In practice, however, we are
often required to write random generators for parametric target
data types as well. Consider, for example, the following Tree data
type definition encoding binary trees with generic information of
type a in the leaves:

data Tree a = Leaf a | Node (Tree a) (Tree a)

In order to represent its data constructors, we can follow the
same recipe presented in Section 3, but also parameterizing our
representations over the type variable a as well:

data ConLeaf a r = MkLeaf a

data ConNode a r = MkNode r r

The rest of the machinery can be derived in the same way as
before, carrying this type parameter and including the appropriate
Arbitrary constraints all along the way:

instance Algebra (ConLeaf a) (Tree a) where · · ·
instance Algebra (ConNode a) (Tree a) where · · ·

instance Arbitrary a⇒ BArbitrary1 (ConLeaf a) where · · ·
instance Arbitrary a⇒ BArbitrary1 (ConNode a) where · · ·

Then, instead of carrying this type parameter in our generation
specifications, we can avoid it by hiding it behind an existential type:

data Some (f :: ∗ → ∗ → ∗) (r :: ∗) = ∀ (a :: ∗) . Some (f a r)

The type constructor Some is a wrapper for a 2-parametric type that
hides the first type variable using an explicit existential quantifier.
Note thus that the type parameter a does not appears at the left hand
side of Some on its definition. In this light, when deriving any Con,
Fun or Pat type instance, we can use this type wrapper it to hide
the additional type parameters of each construction representation:

type instance Con "Leaf" = Term (Some ConLeaf)

type instance Con "Node" = Some ConNode

As a consequence, we can write generation specifications for our
Tree data type without having to refer to its type parameter any-
where. For instance:

type TreeSpec = Con "Leaf" ⊗ 2

⊕ Con "Node" ⊗ 3

Instead, we defer handling this type parameter until we actually
use it to define a concrete generator. For instance, we can write a
concrete generator of Tree Int as follows:

genIntTree :: BGen (Tree Int)

genIntTree = genRep @(TreeSpec ◁ Int)

Where ◁ is a type family that simply traverses our generation spec-
ification, applying the Int type to each occurrence of Some, thus
eliminating the existential type:

type family (f :: ∗ → ∗) ◁ (a :: ∗) :: ∗ → ∗ where
(Some f) ◁ a = f a

(f ⊕ g) ◁ a = (f ◁ a) ⊕ (g ◁ a)

(f ⊗ n) ◁ a = (f ◁ a) ⊗ n

(Term f) ◁ a = Term (t ◁ a)

f ◁ a = f

As a result, in genIntTree, the ◁ operator will reduce the type
(TreeSpec ◁ Int) to the following concrete type:

(Term (ConLeaf Int) ⊗ 2) ⊕ ((ConNode Int) ⊗ 3)

Worth mentioning, this approach for handling parametric types
can be extended to multi-parametric data types with minor effort.

Along with our automated constructions derivation mechanism,
the machinery introduced in this section allows us to specify ran-
dom generators using a simple type-level specification language.

The next section evaluates our approach in terms of performance
using a set of case studies extracted from real-world Haskell imple-
mentations, along with an interesting runtime optimization.

6 BENCHMARKS AND OPTIMIZATIONS
The random generation framework presented throughout this pa-
per allows us to write extensible generators in a very concise way.
However, this expressiveness comes attached to a perceptible run-
time overhead, primarily inherited from the use of Data Types à la
Carte—a technique which is not often scrutinized for performance.
In this section, we evaluate the implicit cost of composing gener-
ators using three real-world case studies, along with a type-level
optimization that helps avoiding much of the runtime bureaucracy.

Balanced Representations. As we have shown in Section 4, the
random generation process we propose in this paper can be seen
as having two phases. First, we generate random values from the
representation types used to specify the shape of our data; and then
we use their algebras to translate them to the corresponding values
of our target data types. In particular, this last step is expected
to pattern match repeatedly against the InL and InR constructors
of the ⊕ operators when traversing each construction injection.
Because of this, in general, we expect a performance impact with
respect to manually-written concrete generators.

As recently analyzed by Kiriyama et al., this slowdown is ex-
pected to be linear in the depth of our representation type [12]. In
this light, one can drastically reduce the runtime overhead by associ-
ating each ⊕ operator in a balanced fashion. So, for instance, instead
of writing (f⊕g⊕h⊕i), which is implicitly parsed as (f⊕(g⊕(h⊕i)));
we can associate constructions as ((f ⊕ g) ⊕ (h ⊕ i)), thus reducing
the depth of our representation from four to three levels and, in
general, from a O(n) to a O(loд(n)) complexity in the runtime over-
head, where n is the amount of constructions under consideration.

Worth mentioning, this balancing optimization cannot be ap-
plied to the original fashion of Data Types à la Carte by Swier-
stra. This limitation comes from that the linearity of the represen-
tation types is required in order to define smart injections, allowing
users to construct values of such types in an easy way, injecting
the appropriate sequences of InL and InR constructors automati-
cally. There, a naïve attempt to use smart injections in a balanced
representation may fail due to the nature of Haskell’s type checker,
and in particular on the lack of backtracking when solving type-
class constraints. Fortunately, smart injections are not required for
our purposes, as users are not expected to construct values by hand
at any point—they are randomly constructed by our generators.

Benchmarks. We analyzed the performance of generating ran-
dom values using three case studies: (i) Red-Black Trees (RBT), in-
spired by Okasaki’s formulation [19], (ii) Lisp S-expressions (SExp),
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Case Study #Con #Fun #Pat Total Constructions
RBT 2 5 6 13
SExp 6 - 9 15
HTML 4 132 - 136

Table 1: Overview of the size of our case studies.

inspired by the package hs-zuramaru3, and (iii) HTML expressions
(HTML), inspired by the html package, which follows the same
structure as our motivating Html example. The magnitude of each
case study can be outlined as shown in Table 1.

These case studies provide a good combination of data construc-
tors, interface functions and patterns, and cover from smaller to
larger numbers of constructions.

Then, we benchmarked the execution time required to generate
and fully evaluate 10000 random values corresponding to each case
study, comparing both manually-written concrete generators, and
those obtained using our modular approach. For this purpose, we
used the Criterion [20] benchmarking tool for Haskell, and limited
the maximum depth of the generated values to five levels. Addi-
tionally, our modular generators were tested using both linear and
balanced generation specifications. Figure 2 illustrates the relative
execution time of each case study, normalized to their correspond-
ing manually-written counterpart—we encourage the reader to ob-
tain a colored version of this work.

As it can be observed, our approach suffers from a noticeable
runtime overhead when using linearly defined representations, spe-
cially when considering the HTML case study, involving a large
number of constructions in the generation process. However, we
found that, by balancing our representation types, the generation
performance improves dramatically. At the light of these improve-
ments, our tool includes an additional type-level computation that
automatically balances our representations in order to reduce the
generation overhead as much as possible.

On the other hand, it has been argued that the generation time is
often not substantial with respect to the rest of the testing process,
especially when testing complex properties over monadic code, as
well as using random values for penetration testing [9, 18].

3http://hackage.haskell.org/package/zuramaru
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Figure 2: Generation time comparison between manually
written and automatically derived composable generators.

All in all, we consider that these results are fairly encouraging,
given that the flexibility obtained from using our compositional
approach does not produce severe slowdowns when generating
random values in practice.

7 RELATEDWORK
Extensible Data Types. Swierstra proposed Data Types à la Carte

[24], a technique for building extensible data types, as a solution for
the expression problem coined by Wadler [25]. This technique has
been successfully applied in a variety of scenarios, from extensible
compilers, to composable machine-mechanized proofs [4, 5, 21,
27]. In this work, we take ideas from this approach and extend
them to work in the scope of random data generation, where other
parameters come into play apart from just combining constructions,
e.g., generation frequency and terminal constructions.

From the practical point of view, Kiriyama et al. propose an opti-
mization mechanism for Data Types à la Carte, where a concrete
data type has to be derived for each different composition of con-
structions defined by the user [12]. This solution avoids much of
the runtime overhead introduced when internally pattern match-
ing against sequences of InL and InR data constructors. However,
this approach is not entirely compositional, as we still need to rely
on Template Haskell to derive the machinery for each specialized
instance of our data type. In our particular setting, we found that
our solution has a fairly acceptable overhead, achieved by automat-
ically balancing our representation types.

Domain Specific Languages. Testing properties using small values
first is a good practice, both for performance and for obtaining
small counterexamples. In this light, SmallCheck [22] is a library
for defining exhaustive generators inspired by QuickCheck. Such
generators can be used to test properties against all possible values
of a data type of up to a given depth. The authors also present Lazy
SmallCheck, a variation of SmallCheck prepared to use partially
defined inputs to explore large parts of the search space at once.

Luck [14] is a domain-specific language for describing testing
properties and random generators in parallel. It allows obtaining
random generators producing highly constrained random data by
using a mixture of backtracking and constraint solving while gen-
erating values. While this approach can lead to quite good testing
results, it still requires users to manually think about how to gener-
ate their random data. Moreover, the generators obtained are not
compiled, but interpreted. In consequence, Luck’s generators are
rather slow, typically around 20 times slower than compiled ones.

In contrast to these tools, this work lies on the automated side,
where we are able to provide lightweight invariants over our ran-
dom data by following the structural information extracted from
the users’ codebase.

Automatic Derivation Tools. In the past few years, there has been
a bloom of automated tools for helping the process of writing
random generators.

MegaDeTH [8, 9] is a simple derivation tool that synthesizes gen-
erators solely based on their types, paying no attention whatsoever
to the generation frequency of each data constructor. As a result, it
has been shown that its synthesized generators are biased towards
generating very small values [18].

http://hackage.haskell.org/package/zuramaru
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Feat [6] provides a mechanism to uniformly generating values
from a given data type of up to a given size. It works by enumerating
all the possible values of such type, so that sampling uniformly from
it simply becomes sampling uniformly from a finite prefix of natural
numbers—something easy to do. This tool has been shown to be
useful for generating unbiased random values, as they are drawn
uniformly from their value space. However, sampling uniformly
may not be ideal in some scenarios, specially when our data types
are too general, e.g., using Feat to generate valid HTML values as in
our previous examples would be quite ineffective, as values drawn
uniformly from the value space of our Html data type represent, in
most cases, invalid HTML values.

On the other hand, DRAGEN is a tool that synthesizes optimized
generators, tuning their generation frequencies using a simulation-
based optimization process, which is parameterized by the distribu-
tion of values desired by the user [18]. This simulation is based on
the theory of branching processes, which models the growth and ex-
tinction of populations across successive generations. In this setting,
populations consist of randomly generated data constructors, where
generations correspond to each level of the generated values. This
tool has shown to improve the code coverage over complex systems,
when compared to other automated generators derivation tools.

In a recent work, we extended this approach to generate random
values considering also the other sources of structural informa-
tion covered here, namely abstract interfaces and function pattern
matchings [17]. There, we focus on the generation model problem,
extending the theory of branching processes to obtain sound predic-
tions about distributions of random values considering these new
kinds of constructions. Using this extension, we shown that using
extra information when generating random values can be extremely
valuable, in particular under situations like the ones described in
Section 2, where the usual derivation approaches fail to synthe-
size useful generators due to a lack of structural information. In
turn, this paper tackles the representation problem, exploring how
a compositional generation process can be effectively implemented
and automated in Haskell using advanced type-level features.

In the light of that none of the aforementioned automated deriva-
tion tools are designed for composability, we consider that the ideas
presented in this paper could perhaps be applied to improve the
state-of-the-art in automatic derivation of random generators in
the future.

8 CONCLUSIONS
We presented a novel approach for automatically deriving flexible
composable random generators inspired by the seminal work on
Data Types à la Carte. In addition, we incorporate valuable struc-
tural information into our generation process by considering not
only data constructors, but also the structural information statically
available in abstract interfaces and functions’ pattern matchings.

In the future, we aim to extend our mechanism for obtaining ran-
dom generators with the ability of performing stateful generation.
In this light, a user could indicate which random constructions in-
teract with their environment, obtaining random generators ensur-
ing strong invariants like well scopedness or type correctness, all
this while keeping the derivation process as automatic as possible.
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