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Abstract
Fuzzing is a popular technique to find flaws in programs using
invalid or erroneous inputs but not without its drawbacks. At one
hand, mutational fuzzers require a set of valid inputs as a starting
point, in which modifications are then introduced. On the other
hand, generational fuzzing allows to synthesize somehow valid
inputs according to a specification. Unfortunately, this requires
to have a deep knowledge of the file formats under test to write
specifications of them to guide the test case generation process.

In this paper we introduce an extended and improved version
of QuickFuzz, a tool written in Haskell designed for testing un-
expected inputs of common file formats on third-party software,
taking advantage of off-the-self well known fuzzers.

Unlike other generational fuzzers, QuickFuzz does not require
to write specifications for the files formats in question since it relies
on existing file-format-handling libraries available on the Haskell
code repository. It supports almost 40 different complex file-types
including images, documents, source code and digital certificates.

In particular, we found QuickFuzz useful enough to discover
many previously unknown vulnerabilities on real-world implemen-
tations of web browsers and image processing libraries among oth-
ers.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.2.5 [Software
Engineering]: Testing and Debugging—Testing tools

Keywords Testing, Fuzzing, Haskell, QuickCheck

1. Introduction
Modern software is able to manipulate complex file formats that
encode richly-structured data such as images, audio, video, HTML
documents, PDF documents or archive files. These entities are
usually represented either as binary files or as text files with a
specific structure that must be correctly interpreted by programs
and libraries that work with such data. Dealing with the low-level
nature of such formats involves complex, error-prone artifacts such
as parsers and decoders that must check invariants and handle a
significant number of corner cases. At the same time, bugs and
vulnerabilities in programs that handle complex file formats often
have serious consequences that pave the way for security exploits
[7].
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How can we test this software? As a complement to the usual
testing process, and considering that the space of possible inputs is
quite large, we might want to test how these programs handle unex-
pected input. Fuzzing [25, 15, 35] has emerged as a promising tool
for finding bugs in software with complex inputs, and consists in
random testing of programs using potentially invalid or erroneous
inputs. There are two ways of producing invalid inputs: mutational
fuzzing involves taking valid inputs and altering them through ran-
domization, producing erroneous or invalid inputs that are fed into
the program; and generational fuzzing (sometimes also known as
grammar-based fuzzing) involves generating invalid inputs from a
specification or model of a file format. A program that performs
fuzzing to test a target program is known as a fuzzer.

While fuzzers are powerful tools with impressive bug-finding
ability [24, 29, 16], they are not without disadvantages. Mutational
fuzzers usually rely on an external set of input files which they use
as a starting point. The fuzzer then takes each file and introduces
mutations in them before using them as test cases for the program
in question. The user has to collect and maintain this set of input
files manually for each file format she might want to test. By
contrast, generational fuzzers avoid this problem, but the user must
then develop and maintain models of the file format types she
wants to generate. As expected, creating such models requires a
deep domain knowledge of the desired file format and can be very
expensive to formulate.

In this paper, we introduce QuickFuzz, a tool that leverages
Haskell’s QuickCheck [9], the well-known property-based random
testing library and Hackage [18], the community Haskell software
repository in conjunction with off-the-shelf mutational fuzzers to
provide automatic fuzzing for several common file formats, without
the need of an external set of input files and without having to
develop models for the file types involved. QuickFuzz generates
invalid inputs using a mix of generational and mutational fuzzing
to try to discover unexpected behavior in a target application.

Hackage already contains Haskell libraries that handle well-
known image, document, archive and media formats. We selected
libraries that have two important features: (a) they provide a data
type T that serves as a lightweight specification and can be used
to represent individual files of these formats, and (b) they provide
a function to serialize elements of type T to write into files. In
general we call this function encode that takes a value of type T
and returns a ByteString . Using ready-made Hackage libraries as
models saves the programmers from having to write these by hand.

The key insight behind QuickFuzz is that we can make random
values of type T using QuickCheck’s generators, the specialized
machinery for type-driven random values generation. Then we se-
rialize the test cases and pass them to an off-the-shelf fuzzer to ran-
domize. Such mutation is likely to produce a corrupted version of
the file. Then, the target application is executed with the corrupted
file as input.



The missing piece of the puzzle is a mechanism to automatically
derive the QuickCheck generators from the definitions of the data
types in the libraries, which we call MegaDeTH.

Finally, if an abnormal termination is detected (for instance, a
segmentation fault), the tool will report the input producing the
crash.

Thanks to Haskell implementations of file-format-handling li-
braries found on Hackage, QuickFuzz currently generates and mu-
tates a large set of different file types out of the box. However, it is
also possible for the user to add file types by providing a data type
T and the suitable serializing functions. Our framework can derive
random generators fully automatically, to be used by QuickFuzz to
discover bugs in new applications.

Although QuickFuzz is written in Haskell, we remark that
it treats its target program as a black box, giving it randomly-
generated, invalid files as arguments. Therefore, QuickFuzz can
be used to test programs written in any language.

Our contributions can be summarized as follows:

• We present QuickFuzz, a tool for automatically generating in-
puts and fuzzing programs parsing several common types of
files. QuickFuzz uses QuickCheck behind the scenes to gen-
erate test cases, and is integrated with fuzzers like Radamsa,
Honggfuzz and other bug-finding tools such as Valgrind and Ad-
dress Sanitizer.

• We release QuickFuzz as open-source and free of charge. As
far as we know, QuickFuzz is the first fuzzer to offer the gen-
eration and mutation of almost forty complex file types without
requiring the user to develop the models: just install, select a
target program and wait for crashes!. The tool is available at
http://quickfuzz.org/.

• We introduce MegaDeTH, a library to derive random genera-
tors for Haskell data types. MegaDeTH is fully automatic and
capable of handling mutually recursive types and deriving in-
stances from external modules. This library can be used to ex-
tend QuickFuzz with new data types. Additionally, we describe
the strategy adopted to improve the automated derivation of ran-
dom generators by using not only the information found on
a data type definition, but the one on its abstract interface as
well. Moreover, we detail and exemplify the technique used to
enforce some semantic properties in the generation of source
code. This is implemented in our tool for widely used program-
ming languages like JavaScript, Python and Lua among others.

• We evaluate the practical feasibility of QuickFuzz and show an
extensive list of security-related bugs discovered using Quick-
Fuzz in complex real-world applications like browsers, image-
processing utilities and file archivers among others.

This paper is a revised and extended version of [17] which
appeared in the Haskell Symposium 2016. This new version brings
many theoretical and experimental contributions.

First, we extended our tool with the improved random gener-
ators using the information obtained from the abstract interface
available for every library used.

Second, in the case of the source code generation, we pre-
sented a technique to enforce semantic properties immediately af-
ter the generation. We implemented this approach using meta-
programming, in order to improve the random code generation of
some widely used programming languages.

Third, we added three sets of experiments to explore how our
tool generates and mutates files. The related work section and the
experiments comparing to other fuzzers was also expanded to cover
the latest developments in the field.

Finally, QuickFuzz now supports a greater number of file for-
mats, including complex file formats found in public key infras-

tructure such as ASN.1, X509 and CRT certificates. Using all the
proposed extensions, we have found more security related bugs,
updating our results and conclusion sections accordingly.

The rest of the paper is organized as follows. Section 2 intro-
duces fuzzing and the functional programming concepts useful to
perform value generation. Section 3 provides an overview of how
QuickFuzz works using an example. Section 4 discusses how to
automatically derive random generators using MegaDeTH. In Sec-
tion 5 we highlight some of the key principles in the design and im-
plementation of our tool using the QuickCheck framework. Later,
in Section 6, we perform an evaluation of its applicability. Section 7
presents related work and Section 8 concludes.

2. Background
2.1 Fuzzers
Fuzzers are very popular tools to test how a program handles unex-
pected input. There are two approaches for fuzzing [26]: mutational
and generational.

Mutational fuzzers These tools produce inputs for testing pro-
grams taking valid inputs and altering them through randomization,
producing erroneous or invalid inputs that are fed into the program.
Typically they work producing a random mutation at the bit or byte
level.

Nowadays, there are plenty of robust and fast mutational
fuzzers. For instance, zzuf [6] is a fuzzer developed by Caca Labs
that produced mutations in the program input automatically hook-
ing the functions to read from files or network interfaces before
a program is started. When the program reads an input, zzuf ran-
domly flips a small percentage of bits, corrupting the data. Another
popular mutational fuzzer is radamsa [29]. It was developed by the
Oulu university secure programming group and works at the byte
level randomly adding, removing or changing complete sequence
of bytes of the program input. It features a large amount of useful
mutations to detect bugs and vulnerabilities.

Both radamsa and zzuf are dumb mutation fuzzers since they
do not use any feedback provided by the actual execution of the
program to test. In the last few years, feedback-driven mutational
fuzzers such as american fuzzy lop [24] and honggfuzz [16] were
developed. These fuzzers use lightweight program instrumentation
to collect information of every execution and use it to guide the
fuzzing procedure.

While mutational fuzzers are one of the simpler and more pop-
ular type of fuzzers to test programs, they still require a good initial
corpus to mutate in order to be effective.

Generational fuzzers These tools produce inputs for testing pro-
grams generating invalid or unexpected inputs from a specification
or model of a file format.

This type of fuzzers are also popular in testing. For instance,
one of the most mature and commercially supported generational
fuzzers is Peach [11]. It was originally written in Python in 2007,
and later re-written in C# for the latest release. It provides a wide
set of features for generation and mutation, as well as monitoring
remote processes. However, in order to start fuzzing, it requires
the specification of two main components to generate and mutate
program inputs:

• Data Models: a formal description of how data is composed in
order to be able to generate fuzzed data.

• Target: a formal description of how data can be mutated and
how to detect unexpected behavior in monitored software.

As expected, the main issue with Peach is that the user has to
write these configuration files, which requires very specific domain
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knowledge. Another option is Sulley [31], a fuzzing engine and
framework in Python. It is frequently presented as a simpler alter-
native to Peach since the model specification can be written using
Python code. A more recent alternative open-sourced by Mozilla
in 2015 is Dharma [27], a generation-based, context-free grammar
fuzzer also in Python. It also requires the specification of the data to
generate, but it uses a context-free grammar in a simple plain text
format.

In recent years, tools like AUTOGRAM [19] and GLADE [4]
helped to learn and syntetize inputs grammars to test programs.
These tools start from valid input files and using the analyzed
program itself, they approximate the input grammar. AUTOGRAM
uses dynamic taint analysis to syntetize the input grammar while
GLADE executes the program as an oracle to answer membership
queries (i.e., whether a given input is valid). Later such grammars
can be used as model in generational fuzzers [4].

2.2 Haskell
Haskell is a general-purpose purely-functional programming lan-
guage [22]. It provides a powerful type system with highly-
expressive user-defined algebraic data types. With the power to pre-
cisely constrain the values allowed in a program, types in Haskell
can serve as adequate lightweight specifications.

Data Types Data types in Haskell are defined using one or more
constructors. A constructor is a tag that represents a way of creating
a data structure and it can have zero or more arguments of any other
type.

For instance, we can define the List a data type representing
lists of values of type a by using two constructors: Nil represents
the empty list, while Cons represents a non-empty list formed by
combining a value of type a and a list (possibly empty) as a tail.
Note that this is a recursive type definition.

data List a
= Nil
| Cons a (List a)

As an example, we define a few functions that we are going to
use in the rest of this work.

length :: List a → Int
length Nil = 0
length (Cons x xs) = 1 + length xs

snoc :: a → List a → List a
snoc x Nil = Cons x Nil
snoc x (Cons y ys) = Cons y (snoc x ys)

reverse :: List a → List a
reverse Nil = Nil
reverse (Cons x xs) = snoc x (reverse xs)

The function length computes the length of a given list, snoc
adds an element at the end of the list and finally reverse reverses
the entire list. Their definitions are straightforward applications of
pattern-matching and recursion. Free type variables in types, such
as a above, are implicitly universally quantified.

Type Classes Haskell provides a powerful overloading system
based on the notion of a type class. Broadly speaking, a type class
is a set of types with a common abstract interface. The functions
defined in the interface are said to be overloaded since they can
be used on values of any member of the type class. In practice,
membership in a type class is defined by means of an instance, i.e.
a concrete definition of the functions in the interface specialized to
the chosen type. For example, Haskell includes a built-in type class
called Eq which defines the equality relation (≡) for a given type.

Assuming that a is in the Eq type class, we can define an instance
of Eq for List a .

instance Eq a ⇒ Eq (List a) where
Nil ≡ Nil = True
(Cons x xs) ≡ (Cons y ys) = (x ≡ y) ∧ (xs ≡ ys)
≡ = False

Note that the (≡) operator is used on two different types: in
the expression x ≡ y it uses the definition given in the instance
for Eq a (equality on a), while in the expression xs ≡ ys it
is a recursive call to the (≡) operator being defined (equality on
List a). Haskell uses the type system to dispatch and resolve this
overloading.

Applicative Functors In this work, we use a well-known ab-
straction for structuring side-effects in Haskell , namely applica-
tive functors [23]. Haskell being a pure language means that all
function results are fully and uniquely determined by the function’s
arguments, in principle leaving no room for effects such as random-
number generation or exceptions, among others. However, such ef-
fects can be encoded in a pure language by enriching the output
types of functions, e.g. pseudo-random numbers could be achieved
by explicitly threading a seed over the whole program. Applicative
functors is one of the ways in which we can hide this necessary
boiler plate to implement effects.

Applicative functors in GHC are implemented as a type class. In
order to define an applicative functor one has to provide definitions
of two functions, pure and (〈?〉), with the types given below.

class Applicative p where
pure :: a → p a
(〈?〉) :: p (a → b)→ p a → p b

The function pure inserts pure values into the applicative struc-
ture (the boiler plate), and (〈?〉) gives us a way to “apply” a func-
tion inside the structure to an argument. Due to overloading, com-
putations written using this interface can be used with any applica-
tive effect.

For example, assume that we have a function (+) :: Int →
Int → Int that adds two numbers, and that we have a type
RNG with an instance Applicative RNG that represents random-
number generation, and moreover that there is a value gen ::
RNG Int that produces a random Int . We can express a com-
putation that adds two random numbers using the applicative in-
terface as follows: pure (+) 〈?〉 gen 〈?〉 gen . This expression has
type RNG Int (which can be read as “an Int produced potentially
from random data”), and it can be further used in other applicative
computations as needed.

Hackage This work draws on packages found in Hackage. Hack-
age is the Haskell community’s central package archive. As we
will explain, we take from this archive the data types used to gen-
erate different file formats. For instance, the JuicyPixels library is
available in Hackage [37], and it has support for reading and writ-
ing different image formats.

Hackage is a fundamental part of QuickFuzz, since it provides
all the lightweight specifications for free and we carefully designed
QuickFuzz to easily include new formats as they appear in this code
repository.

2.3 QuickCheck
QuickCheck is a tool that aids the programmer in formulating and
testing properties of programs, first introduced as a Haskell library
by Koen Claessen and John Hughes [9]. QuickCheck presents
mechanisms to generate random values of a given type, as well
as a simple language to build new generators and specify proper-
ties in a modular fashion. Once the generators have been defined,



the properties are tested by generating a large amount of random
values.

Properties To use this tool, a programmer should define suitable
properties that the code under test must satisfy. QuickCheck de-
fines a property basically as a predicate, i.e. a function that returns
a boolean value. For instance, we can check if the size of a list is
preserved when we reverse it.

prop reverseSize :: List a → Bool
prop reverseSize xs = length xs ≡ length (reverse xs)

QuickCheck will try to falsify the property by generating ran-
dom values of type List a until a counter example is found.

Generators QuickCheck requires the programmer to implement
a generator for List a in order to test properties involving such data
type, like prop reverseSize above. The tool defines an applicative
functor Gen and a new type class called Arbitrary for the data
types whose values can be generated. Its abstract interface consists
solely of a function that returns a generator for the data type a being
instantiated. The applicative functor Gen provides the required
mechanisms to generate random values. As seen in the previous
subsection, effectful behavior requires an applicative structure.

class Arbitrary a where
arbitrary :: Gen a

Then it is up to the programmer to define a proper instance of
Arbitrary for List a using the tools provided by QuickCheck :

instance Arbitrary a ⇒ Arbitrary (List a) where
arbitrary = genList

where
genList = oneof [genNil , genCons ]
genNil = pure Nil
genCons = pure Cons
〈?〉(arbitrary :: Gen a)
〈?〉(arbitrary :: Gen (List a))

The function oneof chooses with the same probability be-
tween a Nil value generator or a Cons value generator. Note that
genCons calls to arbitrary recursively in order to get a generated
List a for its inner list parameter.

However, the previous implementation has a problem; it is pos-
sible for oneof to always choose a genCons , getting the computa-
tion in an endless loop. To solve this, QuickCheck provides tools to
limit the maximum value generation size. An improved implemen-
tation uses the size dependent functions sized and resize , which
take care of the maximum generation size, decreasing it after every
recursive step. When the size reaches zero, the generation always
returns Nil , ensuring that the value construction process never gets
stuck in an infinite loop. The generation size is controlled externally
and is represented in this case by the n parameter.

instance Arbitrary a ⇒ Arbitrary (List a) where
arbitrary = sized genList

where genList n = oneof [genNil , genCons n ]
genNil = pure Nil
genCons 0 = genNil
gencons n = pure Cons
〈?〉(resize (n − 1) arbitrary :: Gen Int)
〈?〉(resize (n − 1) arbitrary :: Gen IntList)

Using this instance, QuickCheck can properly generate arbi-
trary values of List a and test properties using them:

quickCheck prop reverseSize

and if the test passed for all the randomly generated values,
QuickCheck will answer:

++++ OK, passed 100 tests

3. A Quick Tour of QuickFuzz
In this section, we will show QuickFuzz in action with a simple
example. More specifically, how to discover bugs in giffix, a small
command line utility from giflib [14] that attempts to fix broken gif
images. Our tool has built-in support for the generation of Gif files
using the JuicyPixels library [37].

In order to find test cases to trigger bugs in a target program, our
tool only requires from the user:

• A file format name to generate fuzzed inputs
• A command line to run the target program

It is worth to mention that no instrumentation is required in
order to run the target program. For instance, to launch a fuzzing
campaign on giffix, we simply execute:

$ QuickFuzz Gi f ' g i f f i x @@' −a radamsa −s 10

Our tool replaces @@ by a random filename that it will rep-
resent the fuzzed gif file before executing the corresponding com-
mand line. The next parameter specifies the mutational fuzzer it
uses (radamsa in this example) and the last one is the abstract max-
imum size in the gif value generation. Such limitation will effec-
tively bound the memory and the CPU time used during the file
generation.

After a few seconds, QuickFuzz stops since it finds an execution
that fails with a segmentation fault. At this point we can examine
the output directory (outdir by default) to see the gif file produced
by our tool that caused giffix to fail.

Figure 1 shows the QuickFuzz pipeline and architecture. An ex-
ecution of QuickFuzz consists of three phases: high-level fuzzing,
low-level fuzzing and execution. The diagram also shows the inter-
action between the compile-time and the run-time of QuickFuzz.
Let us take a look at what happens in each phase in the giffix exam-
ple.

3.1 High-Level Fuzzing
During this phase, QuickFuzz generates values of the data type T
that represents the file format of the input to the target program.
It relies on the tools provided by QuickCheck. More specifically,
the random number generation tools that can be used to construct
randomized structured data in a compositionally manner. In our
example this representation type T (borrowed from JuicyPixels)
is called GifFile .

data Looping
= LoopingNever
| LoopingForever
| LoopingRepeat Int

data GifFile = GifFile Header Images Looping

A GifFile contains a header (of type Header ), the raw bitmap
images (of type Images), and a looping behavior (of type Looping),
specified by three type constructors denoting the possible behav-
iors. We left Header and Images data types unspecified for the
sake of the example. Note that randomly generated elements of
type GifFile might not be valid Gif files, since the type system is
unable to encode all invariants that should hold among the parts
of the value. For example, the header might specify a width and
height that doesn’t match the bitmap data. For this reason, we con-
sider that this step corresponds to generational fuzzing, where the
data type definition serves as a lightweight approximate model of
the Gif file format which generates potentially invalid instances of
it.



Figure 1: Summary of the random generators deriving using MegaDeTH at compile-time and the test case generation using QuickFuzz at
run-time where gray nodes represent inputs provided by a user and bold nodes represent outputs.

After generating a value of type GifFile with QuickCheck, we
use the encode function for this file type to serialize the GifFile
into a sequence of bytes, which is written into the output directory
for further inspection by the user. Finally, the result of this phase is
a gif image, most likely corrupted.

3.2 Low-Level Fuzzing
Usually the use of high-level fuzzing produced by the values gener-
ated by QuickCheck is not enough to trigger some interesting bugs.
Therefore, this phase relies on an off-the-shelf mutation fuzzer to
introduce errors/mutations at the bit level on the ByteString pro-
duced by the previous step. In particular, the current version sup-
ports the following fuzzers:

• Zzuf: a transparent application input fuzzer by Caca Labs [6].
• Radamsa: a general purpose fuzzer developed by the Oulu Uni-

versity Secure Programming Group [29].
• Honggfuzz: a general purpose fuzzer developed by Google [16].

One of the key principles of the design of QuickFuzz was to
require no parameter tuning in the use of third party fuzzers and
bug-detection tools. Usually, the use of mutational fuzzers requires
fine-tuning of some critical parameters. Instead, we decided to
incorporate default values to perform an effective fuzzing campaign
even without fine-tuning values like mutation rates.

After this phase, the result will be a very corrupted gif file
thanks to the combination of high-level and low-level fuzzing.

3.3 Execution
The final phase involves running the target program with the mu-
tated file as input and check if it produces an abnormal termination.
For each test case file producing a runtime failure, we can also find
in the output directory the intermediate values for each step of the
process:

• A text file with the printed value generated by QuickCheck.
• The test case file before the mutation by the mutational fuzzer.
• The actual mutated test case file which was passed as input to

the target program and resulted in failure.

Using this information, developers can examine how the test
case file was corrupted in order to understand why their program
failed and how it can be fixed.

After corrupting a few gif files, QuickFuzz finds a test case to
reproduce a heap-based overflow in giffix (CVE-2015-7555). This
issue is caused by the lack of validation of the size of the logical
screen and the size of the actual Gif frames. In fact, if we run
the tool during no more than 5 minutes in a single core, we will

obtain dozens of test cases triggering failed executions (crashes and
aborts). Crash de-duplication is currently outside the scope of our
tool, so we manually checked the backtraces using a debugger and
determined that giffix was failing in 3 distinctive ways.

The root cause of such crashes can be the same, for instance
if the program is performing a read out-of-bounds. Nevertheless,
QuickFuzz can still obtain valuable information finding different
crashes associated with the same issue: they can be very useful to
determine if the original issue is exploitable or not.

Additionally, QuickFuzz can use Valgrind [28] and Address
Sanitizer [33] to detect more subtle bugs like a read out-of-bounds
that would not cause a segmentation fault or the use of uninitialized
memory.

4. Automatically Deriving Random Generators
In this section we explain the compilation-time stage of QuickFuzz,
that can be separated into three methodologies depending on how
the file format was implemented, and which file format is in order
to enforce information not coded in the library:

• Automatically deriving Arbitrary instances for target file for-
mats data types. Explained in subsection 4.1.

• Crawling libraries interfaces related to the generation of the
target file formats, and then, generating a higher level structure
that represents manipulations of values using those interfaces.
Explained in subsection 4.2.

• Post-processing the arbitrary generated values to enforce spe-
cific semantic properties. In particular, we use such technique
to improve source code generation. Explained in subsection 4.3.

The last two stages are not required for every file format gener-
ation and fuzzing, however, they improve the variety of generated
values as discussed on their respective subsections.

4.1 MegaDeTH
Mega Derivation TH (MegaDeTH) is a tool that gives the user the
ability to provide class instances for a given type, taking care to
provide suitable class instances automatically. As an example, we
will analyze the GifFile data type:

data Looping
= LoopingNever
| LoopingForever
| LoopingRepeat Int

data GifFile = GifFile Header Images Looping

In order to define an Arbitrary instance for GifFile , the pro-
grammer has to define such instances for Header , Images and



Looping as well. We will refer to GifFile as our target data type,
since it is the top-level data type we are looking to generate. Also,
we will refer to Header , Images and Looping as the nested data
types of GifFile . If any of these data types define further nested
data types, this process has to be repeated until every data type in-
volved in the construction of GifFile is a member of the Arbitrary
type class.

Since Haskell benefits the practice of defining custom data
type in an algebraic way, a data type definition can be seen as
a hierarchical structure. Hence, deriving Arbitrary instances for
every data type present at the hierarchy can be a repetitive task.
MegaDeTH offers a solution to this problem: it gives the user a way
to thoroughly derive instances for all the intermediate data types
that are needed to make the desired data type instance work.

MegaDeTH was implemented using Template Haskell [34], a
meta-programming mechanism built into GHC that is extremely
useful to process the syntax tree of Haskell programs and to insert
new declarations at compilation time. We use the power of Tem-
plate Haskell to extract all the nested types for a given type and
derive a class instance for each one of them, finally instantiating
the top-level data type. Since Haskell gives the user the possibil-
ity of writing mutually recursive types, MegaDeTH implements a
topological sort to find a suitable order in which to instantiate each
data type satisfying their type dependencies.

We can simply derive all the required instances using MegaDeTH’s
function devArbitrary that automatically generates the following
instances (among others), simplified for the sake of understanding:

instance Arbitrary Looping where
arbitrary = sized gen

where
gen n = oneof
[pure LoopingNever
, pure LoopingForever
, pure LoopingRepeat
〈?〉(resize (n − 1) arbitrary :: Gen Int)
]

instance Arbitrary GifFile where
arbitrary = sized gen
where gen n = pure GifFile
〈?〉(resize (n − 1) arbitrary :: Gen Header)
〈?〉(resize (n − 1) arbitrary :: Gen Images)
〈?〉(resize (n − 1) arbitrary :: Gen Looping)

As we can see, the derived code reduces the size whenever a
type constructor is used and select which one is to be used with
QuickCheck’s oneof function. These automatic generated random
generators follow directly the ideas presented in section 4, that is
to choose between all the available constructors and generate the
required arguments of it.

However, it is not always the case that we can choose between
available constructors in order to generate rich structured values.
We explore the limitations of this approach with further detail.
The next example introduces a different manner to define a data
type which exploits the limitations of MegaDeTH, and serves as
introduction to the solution.

Designing a Html manipulating library. One of the main de-
cisions involved when designing a domain-specific language [20]
(DSL) manipulation library is the level of embedding this DSL will
have. The most common approaches are deep embedding and shal-
low embedding [1]. Deep embedded DSLs usually define an inter-
nal intermediate representation of the terms this language can state,
along with functions to transform this intermediate representation
forth and/or back to the target representation. In this kind of em-
bedding, the domain-specific invariants are mainly preserved by the

internal representation. The previosly presented GifFile data type
is an example of this technique. On the other hand, shallow embed-
ded DSLs often use a simpler internal representation, leading the
task of preserving the domain-specific invariants to the functions at
the library abstract interface.

Since Html is a markup language, it is esentially conformed by
plain text. Hence, instead of defining a complex data type using a
different type constructor for each Html tag, the library designer
could be tempted to use a shallow embedding representation, em-
ploying the same plain text representation for the library internal
implementation:

module Html where

type Html = String

head :: Html → Html
body :: Html → Html
div :: Html → Html
hruler :: Html
(〈+〉) :: Html → Html → Html

toHtml :: String → Html
renderHtml :: Html → ByteString

In the definition above, the Html data type is a synonym to the
String data type. Thus, the functions on its abstract interface are
basically String manipulating functions with the implicit assump-
tion that if they take a correct html, they will return a correct html,
for instance:

head :: Html → Html
head hd = "<head>"++ hd ++ "</head>"

hruler :: Html
hruler = "</hr>"

(〈+〉) :: Html → Html → Html
h1 〈+〉 h2 = h1 ++ h2

Given that our guide in the derivation of random generators is
the data type, MegaDeTH needs it to be structurally complex in or-
der to generate complex data, remember that we based our genera-
tors on the assumption that we can choose with the same probability
between different constructors in order to generate random values.
If we derive a random generator for the given Html data type, its
type definition does not provide enough structure to generate useful
random values. Instead, the generated Arbitrary instance delegates
this task to such instance of the String data type:

instance Arbitrary Html where
arbitrary = (arbitrary :: Gen String)

The resulting Html values generated by this Arbitrary instance
are just random strings, which rarely represents a valid Html value.
Therefore, this kind of generators are useless for our purpose of
discovering bugs on complex software parsing markup languages
such as HTML.

This approach to define libraries is common to find in the wild,
being blaze-html [21] or language-css [2] some examples of this.
Instead of discarding them, next subsection introduces a different
approach we took to derive powerful Arbitrary instances for this
kind of libraries.

4.2 Encoding functions information into actions
Haskell’s expressive power allows the library programmer to define
a file format representation as a custom data type in several ways.
As we have seen previously, MegaDeTH derive useful Arbitrary
instances when the programmer had encoded invariants directly in
the data type. On the other hand, as we have seen in the previous
subsection, those invariants can be forced in the operations declared



in the data type abstract interface. These operations manipulate the
values of the data type, transforming well formed values into well
formed results.

Since we need data types constructors to be able to use MegaDeTH,
we use the concept of Actions [8]. Given a type T we can look up
all the functions that return a T value and think of them as a way to
create a new T value and call these functions actions. Henceforth,
we can define a new data type where each function that creates a T
value defines a constructor in this new type. In general, for a given
data type we will refer to its actions-oriented data type by simply
as its actions data type.

In order to illustrate this technique, we will reuse the Html
manipulating library example defined in the previous subsection:

module Html where

type Html = String

To build a complex Html document, the programmer should use
the functions defined in the abstract interface of this module. For
example, a simple Html document could be represented as follows:

myPage :: Html
myPage =

head (toHtml "my head")
〈+〉 body
(div (toHtml "text")
〈+〉 hruler
〈+〉 div (toHtml "more text"))

The Html actions data type can be automatically generated,
where each constructor represents a possible action over the orig-
inal data type, whose type parameters corresponds to the ones at
the original function this action intends to express. Note that, if an
action has a parameter that comprises the original data type, it is
replaced for its actions-oriented one, making this a recursively de-
fined data type.

data HtmlAction
= Action head HtmlAction
| Action body HtmlAction
| Action div HtmlAction
| Action hruler
| Action toHtml String
| Action + HtmlAction HtmlAction

Note that renderHtml will play the role of the encoding func-
tion in our representation, since it gives us a way to serialize Html
values. Also, is worth to mention that it is not included as an action,
since it does not return an Html value.

The previous value could be encoded using actions as follows:

myPageActions :: HtmlAction
myPageActions =
(Action head (Action toHtml "my head"))

‘Action + ‘
(Action body

((Action div (Action toHtml "text")
‘Action + ‘
Action hruler)
‘Action + ‘
Action div (Action toHtml "more text")))

Once an actions data type is derived for a given data type, a
value of its type describes a particular composition of functions that
returns a value of the original data type. Hence, we need a function
performHtml that performs an action using the underlying imple-
mentation of the interface functions, returning corresponding val-
ues of the original type.

performHtml :: HtmlAction → Html
performHtml (Action head v)

= head (performHtml v)
performHtml (Action body v)

= body (performHtml v)
performHtml (Action div v)

= div (performHtml v)
performHtml Action hruler

= hruler
performHtml (Action toHtml v)

= toHtml v
performHtml (Action + v1 v2 )

= (performHtml v1 ) 〈+〉(performHtml v2 )

Writting the action data type for common target data types is
usually an straightforward task. A similar approach was taken in
[3] in order to manually derive random generators for a particular
data type of interest. However, this task also becomes repetitive,
specially when the target data type contains several functions on
its abstract interface. That is the reason why we automate this
process by using Template Haskell. The function devActions is
responsible for this, generating at compile time the actions data
type and the performing function for a target data type. This process
can be described as follows:

Step 1. Crawl the modules where the target data type is present,
extracting all type constructors and functions declarations.

Step 2. Find any declarations that return a value of the target data
type. Each one will become a type constructor at the actions
data type.

Step 3. Generate the actions data type and the performing function
for the target data type by using the previously obtained actions.

Once the actions data type and performing function have
been generated for a given target data type, it is possible to use
MegaDeTH to obtain an Arbitrary instance for the actions data
type, and then, we can obtain such instance for the target data type
by simply performing an arbitrary value of the first one:

instance Arbitrary Html where
arbitrary = pure performHtml
〈?〉(arbitrary :: Gen HtmlAction)

We found this actions-oriented approach to be a convenient way
to deal with Haskell libraries with no restrictive type definitions,
wrapping their interfaces with a higher level structure and deriving
suitable Arbitrary instances for them. Given that, it is possible to
define useful Arbitrary instances for a variety of target data types
based on the abstractions defined by the library writer, regardless
of how the library was implemented.

There are limitations related to the generation of the actions
data type. One of them involves definitions using complex types
wrapping the target data type. For instance, suppose we extend the
Html module adding a function for splitting Html values:

split :: Html → (Html ,Html)

The result type for split does not match the target data type.
However, we would like to translate it into an action as well, since
the target data type (Html ) is somehow wrapped by its result type
((Html ,Html)). In order to translate split into an action, we need
to know beforehand how to extract the target data type values from
the wrapped value.

Another limitation is related to the special treatment required by
polymorphic function definitions. Remember the definition of the
polymorphic data type List a which represents a list of elements
of type a , where a could be any data type:



data List a = Nil | Cons a (List a)

We can define the following polymorphic functions for all a .

append :: a → List a → List a
concat :: List a → List a → List a

Our current approach can only handle non-polymorphic func-
tions. We use a naive workaround to solve this consisting on in-
stantiating every polymorphic function at the abstract interface of
a module into non-polymorphic ones. This instantiation process is
driven by the user, who decides which data types are interesting
enough to be replaced. For instance, if the user decides to instan-
tiate the previous list-handling functions with Int and String data
types, our tool generates the following functions:

append 1 :: Int → List Int → List Int
append 2 :: String → List String → List String
concat 1 :: List Int → List Int → List Int
concat 2 :: List String → List String → List String

Then, these instantiated functions are treated like any other non-
polymorphic ones at the stage of deciding which ones will be used
as actions.

4.3 Enforce Variable Coherence
Using the previously explained machinery, our tool can randomly
generate source code from various programming languages such as
Python, JavaScript, Lua and Bash. The generation process relies on
the type representing the abstract syntax tree (AST) of the code of
each language.

Unfortunately, we found that automatically derived generators
for such languages are not always effective at the generation of
complex test cases, since they cannot account with all the invari-
ants required for source code files to be semantically correct. In
particular, one of the things that random code cannot account for is
variable coherence, i.e., when we use a variable, it has to be defined
(or declared).

We can see in the example below where QuickFuzz generates
a complete program with variables and assignments but without
any sense nor coherence between them. For example, the following
program is rejected by any compiler within one of the first passes.

r p a = kk
meg = −18.3 == p
i z e = l e

In order to tackle this issue, we developed a generic technique
to enforce properties in the resulting generated values (in this case,
Python code). In particular, our goal is to correct generated source
code as a first step to use QuickFuzz to test compilers and inter-
preters in deep stages of the parsing and executing process.

While there are some tools to test compilers, for instance
CSmith [39] for stressing C compilers, they are specific tools de-
veloped for certain languages. Our approach is different, since we
aim to develop a general technique that works in different complex
languages provided some general guidance.

In this work, we decided to enforce variable coherence by mak-
ing some corrections in the freshly generated test case. QuickFuzz
goes through its AST collecting declared variables in a pool of
variables identifications and changing unknown variables for previ-
ously declared variables arbitrarily taken from that pool. The spe-
cial case when the pool is empty and a variable is required is sorted
by generating an arbitrary constant expression.

As result we get programs where every variable used is already
defined before it is used.

r p a = 4
meg = −18.3 == r p a

i z e = meg

As we have seen in this section, it is possible to enforce user
knowledge not encoded in either the type nor the library of a desired
source code. It is also worth noting that this approach is as general
as it can be. Therefore, we can implement complex invariants based
on how we want to post-process the AST with all the information
this structures provide.

5. Detecting Unexpected Termination of
Programs using QuickCheck

This section details how we defined suitable properties in QuickCheck
to perform the different phases of the fuzzing process and detect
unexpected termination of programs.

Detecting Unexpected Termination in Programs In Haskell, a
program execution using certain arguments can be summarized
using this type:

type Cmd = (FilePath, [String ])

First, we defined the notion of a failed execution. In our tool
a program execution fails if we detect an abnormal termination.
According to the POSIX.1-1990 standard, a program can be abnor-
mally terminated after receiving the following signals:

• A SIGILL when it tries to execute an illegal instruction.
• A SIGABRT when it called abort.
• A SIGFPE when it raised a floating point exception.
• A SIGSEGV when it accessed an invalid memory reference.
• A SIGKILL at any time (usually when the operating system

detects it is consuming too many resources).

After a process finishes, it is possible to detect signals associated
with failed executions by examining its exit status code. Tradition-
ally in GNU/Linux systems a process which exits with a zero exit
status has succeeded, while a non-zero exit status indicates fail-
ure. When a process terminates with a signal number n, a shell
sets the exit status to a value greater than 128. Most of the shells
use 128 + n. We capture such condition in the Haskell function
has failed , in order to catch when a program finished abnormally:

has failed :: ExitCode → Bool
has failed (ExitFailure n) =

(n < 0 ∨ n > 128) ∧ n 6≡ 143
has failed ExitSuccess = False

We only excluded SIGTERM (with exit status of 143) since we
want to be able to use a timeout in order to catch long executions
without considering them failed.

High-Level Fuzzing Properties In order to use QuickCheck
to uncover failed executions in programs, we need to define a
property to check. Given an executable program and some argu-
ments, QuickFuzz tries to verify that there is no failed execution
as we defined above for arbitrary inputs. We call this property
prop NoFail . It serializes inputs to files and executes a given pro-
gram. Its definition is very straightforward:

prop NoFail :: Cmd → (a → ByteString)
→ FilePath → a → Property

prop NoFail pcmd encode filename x =
do

run (write filename (encode x ))
ret ← run (execute pcmd)
assert (¬ (has failed ret))
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Figure 2: Average size in bytes of the generated files per file format
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After that, we can QuickCheck the property of no-failed execu-
tions instantiating prop NoFail with suitable values. For instance,
let us assume we want to test the conversion from Gif to Png images
using ImageMagick. The usual command to achieve this would be:

$ c o n v e r t s r c . g i f d e s t . png

In terms of prop NoFail , to test the command above we call
the QuickCheck function using the following property:

let cmd = ("convert", ["src.gif", "dest.png"]) in
prop NoFail cmd encodeGif "src.gif"

where encodeGif is a function to serialize GifFiles . Finally,
QuickCheck will take care of the GifFile generation, reporting any
value that produces a failed assert in prop NoFail .

Low-Level Fuzzing Properties In the next phase of the fuzzing
process, we enhance the value generation of QuickCheck with
the systematic file corruption produced by off-the-shelf fuzzers.
Intuitively, we augment prop NoFail with a low-level fuzzing
procedure abstracted as a call to the fuzz function.

fuzz :: Cmd → FilePath → IO ()

After calling fuzz , the content of a file will be changed some-
how. Using this new function, we define a new property called
prop NoFailFuzzed which mutates the serialized file before the
execution takes place:

prop NoFailFuzzed :: Cmd → Cmd → (a → ByteString)
→ FilePath → a → Property

prop NoFailFuzzed pcmd fcmd encode filename x =
do

run (write filename (encode x ))
run (fuzz fcmd filename)
ret ← run (execute pcmd)
assert (¬ (has failed ret))

Finally, is up to QuickCheck to find a counter-example of
prop NoFailFuzzed . This counter-example is a witness which
causes the target program to fail execution.

As result of this process we can test any compiled program,
written in any language, with a plethora of low-level fuzzers with
prop NoFailFuzzed .

6. Evaluation
In this section we will describe different experiments to understand
how QuickFuzz is generating and mutating input files. From the ex-
tensive list of file formats supported by QuickFuzz, shown in Fig-
ure 6a, we have selected five of them to perform our experiments:
Zip, Png, Jpeg, Xml and Svg. We have selected these because they
are binary and human-readable markup formats in different appli-
cations. We aim to observe how QuickFuzz behaves in the gener-
ation and fuzzing among those. Since the generation and fuzzing
are intrinsically a random procedure, each experimental measure
detailed in this section was repeated 10 times in a dedicated core of
an Intel i7 running at 3.40GHz.

6.1 Generation Size
An important parameter for generational fuzzers is the maximum
size of the resulting file. Such value should be carefully controlled,
allowing the user to set it, according to the resources available for
the fuzzing campaign. Otherwise, if the file generation results in
a very large number of tiny input files or extremely large ones, it
will not be effective to detect bugs. The resulting fuzzing campaign
will be either useless to trigger bugs in the target program or will
consume a huge amount of memory and abort.

To avoid this pitfall, our instances of Arbitrary are carefully
crafted to keep the size generated value under control using the
resize function provided by QuickCheck. Figures 2a, 2b and 2c
show how the average size of bytes behaves when the maximum
QuickCheck size is increased. The size of the resulting files grows
linearly according to the maximum size allowed to generate by the
QuickCheck framework.

It is also important to take a deeper look in the sizes of the
generated files to understand how they are distributed, considering
that a bias toward the generation of small files is useful in the
context of the bug finding task. In fact, the benefit is twofold
since (1) it keeps the amount of time spent in program executions
low and (2) it prefers to generate small test cases. The resulting
files triggering bugs or vulnerabilities tend to be quite small and
therefore are easier to understand for developers looking to patch
the faulty code.

In our experiments, we analyzed the size of the files of generated
by QuickFuzz bucketing them in Figures 3a, 3b and 3c. In such
figures, we can observe a bias for the generation of small input
files.

6.2 Generation Effectiveness
Ideally, a fuzzer should generate or mutate inputs to produce a
large number of distinctive executions to exercise different lines of
code. Hopefully, this process should trigger conditions to discover
unexpected behaviors in programs.

In order to explore the effectiveness of the generation of fuzzed
files in QuickFuzz, we evaluate how many different executions we
can obtain in the parsing and processing of the generated files. For
the purposes of our experiments, we use the coverage measure
know as path employed by American Fuzzy Lop [24], a well-
known fuzzer, because:

• It was designed to be useful in the fuzzing campaigns: finding
more paths is highly correlated with the discovery of more
bugs [5].

• It was built using a modular approach: we can easily re-use the
corresponding command line program to only extract paths and
count them.

• It has a very fast instrumentation: it allows to extract paths at a
nearly native speed.

Note that the AFL coverage metric might map different execu-
tions to the same path.

In our experiments, we use QuickFuzz to generate and fuzz
Png, Jpeg and Xml files. Then, we run each fuzzed file as input
to widely deployed open source libraries to parse and process
them: we compiled instrumented libraries to parse Jpeg files using
libjpeg-turbo 1.3.0, Png files using libpng 1.2.50 and Xml files
using libxml 2.9.1. Figures 4a, 4c and 4b show how many paths
can be extracted from each instrumented implementation either
using low-level mutators (zzuf and radamsa) or directly executing
the generated file.

We also included two baseline measures to compare how the file
structure created by our tool improves the path discovery. The first
one generating files of random bytes and the second one using the
corresponding magic numbers followed by a random bytes.

In the case of random generation, the image parsers libjpeg-
turbo and libpng will try to find a valid image since they work with
arbitrary binary data. The libxml 2.9.1 rejects the random file very
early in the parsing process even if it starts like a valid Xml file.

QuickFuzz discovers consistently more paths that these two
baselines using random file generation.

Also, as expected, if the user generates more files using Quick-
Fuzz, it is more likely to discover more paths. Additionally, the



Figure 5: Overhead of QuickFuzz performing the fuzzing process.

number of discovered paths will grow very slowly after a few
thousands files generated. This is understandable, since QuickFuzz
works as blind fuzzer: it does not receive any feedback on the exe-
cutions.

In some file formats the effect of low-level fuzzing becomes
relevant. For instance, in the case of parsing fuzzed Xml files with
libxml2, using radamsa as a low level fuzzers noticeable improves
the number of discovered paths, compared to the executions of
unaltered files.

Interestingly enough, mutating the files using zzuf produces
quite the opposite effect: the number of paths is significantly re-
duced when this fuzzer is used. This behavior might be caused by
the bit flipping of this fuzzer, causing the files to become too cor-
rupted to be read, rejecting the files at the early stages of parsing.

6.3 Generation, Mutation and Execution Overhead
A good performance is critical in any fuzzer: we want to spend as
little time as possible in the generation and mutation. For the over-
head evaluation of QuickFuzz in the different stages of the fuzzing
process, we measured the time required for high-level fuzzing with
and without execution (noted as gen+exec and gen respectively) as
well as high and low-level fuzzing using zzuf and radamsa (noted
as gen+exec+zzuf and gen+exec+rad respectively).

In order to strictly quantify the overhead in execution, we used
/bin/echo which does not read any file. Therefore, it should
always take the same amount of time to execute.

Figure 5 shows a comparison of the time that QuickFuzz took
to perform each step of the fuzzing process for three different file
types. Our experiments suggest that the performance of the code
generated by MegaDeTH is not limiting the other components of
the tool. Additionally, as expected, there is a noticeable overhead
in the execution. It is possible that most of the extra time executing
is used for calling fork and exec primitives: this why is one the
reasons some fuzzers implement a fork server [24].

We expected that the overhead introduced by the use of a fuzzer
to be consistent regardless of the data to mutate. For instance, in the
case of zzuf, a fuzzer which only XORs bits from the input files
without reading them, it should be a constant overhead. However,
the case of Radamsa is different. It is a fuzzer which looks at the
structure of the data and performs some mutations according to
it. In fact, it was specially designed to detect and fuzz markup

languages: this can explain the higher overhead in the mutation of
Svg files using it.

6.4 Real-World Vulnerabilities Detection
Thanks to Haskell implementations of file-format-handling li-
braries found on Hackage, QuickFuzz currently generates and mu-
tates a large set of different file types out of the box. Table 6a
shows a list of supported file types to generate and corrupt using
our tool.

We tested QuickFuzz using complex real-world applications
like browsers, image processing utilities and file archivers among
others. All the security vulnerabilities presented in this work were
previously unknown (also known as zero-days). The results are
summarized in Table 6b. An exhaustive list is available at the
official website of QuickFuzz, including frequent updates on the
latest bugs discovered using the tool.

Additionally, we reported some ordinary bugs. For instance, the
use of variable coherence enforcement allowed us to find a bug that
stalls the compilation in Python, and more than a twenty memory
issues in GNU Bash and Busybox.

6.5 Comparison with Other Fuzzers
To make a fair comparison between fuzzers is a challenge. First,
it only makes sense to compare between fuzzers using similar
techniques. Second, in the case of generative ones, the model to
produce files in all the compared fuzzers should be similar or
somehow equivalent; otherwise, generating a complex input will
most likely take varying amounts of time and could result in some
fuzzers being unfairly flagged as slow and inefficient.

Moreover, some fuzzers like Peach are not useful to start dis-
covering bugs immediately after installing them since they include
almost no models to start the input generation process. Usually, if
you want to have a wide support of file-types or protocols to fuzz,
you need to pay to access them [12] or hire an specialist to create
them. In other cases like Sulley, fuzzers are developed to be more
like a framework in which you can define models, mutate and mon-
itor process. As a result, no file-type specifications are provided out
of the box.

Recently, Mozilla released Dharma, a fuzzer to generate very
specific files like Canvas2D and Node.js buffer scripts. It was de-
signed by the Mozilla Security team to stress the API of Firefox.
Nevertheless, this tool is good candidate to compare with Quick-
Fuzz since it includes a grammar to generate Svg files and our tool
currently supports to generate this kind of files through the types
and functions of svg-tree package [36].

A comparison of the bugs and vulnerabilities discovered by both
fuzzers is not possible: we could not find any public information
regarding how many issues were reported thanks to Dharma. How-
ever, we suspect that the Mozilla Security already used it exten-
sively to improve the quality of the Firefox parsers and the render
engine.

Fortunately, it is certainly possible to compare the through-
put of both fuzzers: QuickFuzz has approximately 1.9 times more
throughput generating files Svg files than Dharma. While this mea-
sure is far from perfect, it gives a hint on how optimized is the
generation of files using our tool.

6.6 Limitations
The use of third-party modules from Hackage carries some limita-
tions. Some of the modules we used to serialize complex file types
do not implement all the features. For instance, the Bmp support in
Juicy.Pixels cannot handle or serialize compressed files. There-
fore this feature will not be effectively tested in the Bmp parsers.
In this sense, types are used as incomplete specifications of file-
formats.

http://QuickFuzz.org
http://QuickFuzz.org
https://bugs.python.org/issue27695
https://bugs.python.org/issue27695
https://lists.gnu.org/archive/html/bug-bash/2016-09/msg00003.html
https://bugs.busybox.net/buglist.cgi?bug_status=__all__&content=QuickFuzz&no_redirect=1&order=Importance&query_format=specific


(a) File-types supported for
fuzzing

Program File-Type Reference Program File-Type Reference
Firefox Gif CVE-2016-1933 Cairo Svg CVE-2016-9082
Firefox Zip CVE-2015-7194 libgd Tga CVE-2016-6132
Firefox Svg 1297206 libgd Tga CVE-2016-6214
Firefox Gif 1210745 GraphicsMagick Svg CVE-2016-2317
mujs Js CVE-2016-9109 GraphicsMagick Svg CVE-2016-2318

Webkit Js CVE-2016-9642 Mini-XML Xml CVE-2016-4570
Webkit Regex CVE-2016-9643 libical Ical CVE-2016-9584

gif2webp Gif CVE-2016-9085 Mini-Xml Xml CVE-2016-4571
VLC Wav CVE-2016-3941 GDK-pixbuf Bmp CVE-2015-7552
Jasper Jpeg CVE-2015-5203 GDK-pixbuf Gif CVE-2015-7674

libXML Xml CVE-2016-4483 GDK-pixbuf Tga CVE-2015-7673
libXML Xml CVE-2016-3627 GDK-pixbuf Ico CVE-2016-6352

Jq Json CVE-2016-4074 mplayer Wav CVE-2016-5115
Jasson Json CVE-2016-4425 mplayer Gif CVE-2016-4352
cpio CPIO CVE-2016-2037 libTIFF Tiff CVE-2015-7313

(b) Some of the security issues found by QuickFuzz

Figure 6: Implementation and results

We performed some experiments to compare how good is the
input generation variety of QuickFuzz against a mature and com-
plete test suite of png files. We used a test suite created by Willem
van Schaik [38] that contains a variety of small PNG files. It cov-
ers different color types (gray-scale, rgb, palette, etc.), bit-depths,
interlacing and transparency configurations allowed by the PNG
standard. Also, in order to test robustness in the PNG parsers, this
test suite includes valid images using odd sizes (for instance, very
small and very large) and corrupted images. We counted the amount
of distinctive paths after processing all the png files in the test suite
using pngtest from libpng [32]. We performed the same experi-
ment, but using QuickFuzz to generate and mutate png files 10,000
times.

The execution of test suite uncovers 6268 different paths, while
the generation and fuzzing of 10,000 png files using QuickFuzz,
only discovers 746 different paths. Therefore, our tool can only
trigger ∼ 11% of the paths we discover parsing a complex image
format like PNG.

There are several explanations for such low coverage compared
with a complete test suite like pngtest. On one hand, the gener-
ation of png files in QuickFuzz is limited by supported features in
third party libraries like Juicy.Pixels [37]. For instance, this library
lacks of the code to encode interleaved png images. On the other
hand, good test suites like this one are very expensive to create
since they require a very deep knowledge of the file format to test.
The use of automatic tools for test suites synthesis still challenging.

Despite the automatic generation of a high quality corpus of a
very complex file format like PNG is still unfeasible, it is a long
term goal of our research.

Another limitation related with the encode function is caused
by the use of partial functions. Then the encoding could fail to
execute correctly in large number of randomly generated inputs.
For instance, if the encode function requires some hard constrain
to be present in the generated value such as some particular magic
number to be guessed:

encodeHeader :: Int → ByteString
encodeHeader version =
| version ≡ 87 = "GIF87"

| version ≡ 89 = "GIF89"

| otherwise = error "invalid version"

In this function, the encoding of gif format files only defines two
version numbers 87 and 89: therefore, the approach to value gener-
ation defined in 4.1 is not going to be effective, since the probability
of selecting a valid version number is 1 in 2, 147, 483, 647. Cur-
rently, this kind of issues are avoided manually selecting suitable
libraries from Hackage to integrate in QuickFuzz.

Finally, the encode function used in the serialization includes
its own bugs. Unsurprisingly some of them can be triggered by
the generation of QuickCheck values. We reported some of these
issues as bugs [13] to the upstream developers of the libraries we
use in QuickFuzz. In any case, we have a simple workaround when
no fix is available: if the encode function throws an unhandled
exception, we ignore it and continue the fuzzing process using the
next generated value to serialize.

7. Related Work
Automatic algebraic data type test generation Claessen et al. [10]
propose a technique for automatically deriving test data generators
from a predicate expressed as a Boolean function. The derived
generators are both efficient and guaranteed to produce a uniform
distribution over values of a given size.

While MegaDeTH currently produces generators with ad-hoc
distributions, it would be feasible to integrate this technique to
the existing machinery to achieve more control over the test case
generation process.

Testing compilers generating random programs As we stated in
4.3, we observed that Arbitrary instances are not always effective
in the generation of source code, since it requires to carefully define
variable names and functions before trying to use them. Therefore,
the fuzzed generated source code will be very likely rejected in the
first steps of the parsing of interpreters or compilers. This is a well-
known issue that has been studied extensively by Pałka et al. [30]
in the context of testing a compiler.

The approach in that paper always generate valid lambda calcu-
lus terms, representing programs in Haskell. Then, they compiled
the resulting terms using the Glasgow Haskell compiler in different
optimization levels, to try to discover incorrectly compiled code.

In this sense, our tool also manages to generate source code and
can be used to test compilers. Nevertheless they are designed with
different goals in mind; on one hand, the authors of [30] generate
a program of a strongly typed language. They define suitable rules

https://bugzilla.mozilla.org/show_bug.cgi?id=1297206
https://bugzilla.mozilla.org/show_bug.cgi?id=1210745


for the generation, and how to backtrack in case of failing to use
them.

On the other hand, QuickFuzz generates only source code from
dynamically typed programs, without using any backtracking in
order to keep the generation very fast, but not always correct.

8. Conclusions and Future Work
We have presented QuickFuzz, a tool for automatically generat-
ing inputs and fuzzing programs that work on common file for-
mats. Unlike other fuzzers, QuickFuzz does not require the user to
provide a set of valid inputs to mutate, not to place the burden of
writing specifications for file formats on the programmer. Our tool
combines both generational and mutational fuzzing techniques by
bringing together Haskell’s QuickCheck library and off-the-shelf
robust mutational fuzzers. In addition, we introduce MegaDeTH, a
library that can be used to generate instances of the Arbitrary type
classes. MegaDeTH works in tandem with QuickFuzz, allowing us
to crowd-source the specifications for well-known file formats that
are already present in Hackage libraries. We tried QuickFuzz in the
wild and found that the approach is effective in discovering inter-
esting bugs in real-world implementations. Moreover, to the best
of our knowledge QuickFuzz is the only fuzzing tool that provides
out-of-the-box generation and mutation of almost forty complex
common file formats, without requiring users to write models or
configuration files.

As future work, we intend to introduce mutations at different
levels of the QuickFuzz pipeline rather than just at the level of
the serialized ByteString . In particular, we aim to explore code
analysis of the serializations functions to detect and selectively
break invariants and to perform mutations on such functions to
corrupt files.

Another interesting feature to add to our tool is the input sim-
plification procedure [40]. This procedure can be used just after a
crash is detected and is very important for the developers looking
to fix the issue, since the minimized test case should only trigger
the code that is required to reproduce the unexpected behavior.

Our goal is to implement a general way to automatically derive
specialized input simplification strategies for algebraic data types
encoding different file formats. Moreover, by using the actions-
based approach we would like to work in a higher level of abstrac-
tion, reducing a test case to the minimal sequence of actions needed
to trigger an error on target programs.

Additionally, we observed that in general Haskell programmers
implement their libraries in the more general way they can abusing
of the expressive power of Haskell data-type ecosystem. Therefore
the action-based approach is a good starting point to derive a
Generalized Algebraic Data-types that can provides us with more
information based in the functions found in the library, and we
might capture effectful behaviors with this idea.

Finally, we would like to extend our approach to the generation
and fuzzing of network protocols, since most of the vulnerabilities
there can be remotely exploitable.
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[5] M. Böhme, V.-T. Pham, and A. Roychoudhury. Coverage-
based greybox fuzzing as markov chain. In Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Com-
munications Security, pages 1032–1043. ACM, 2016.

[6] CACA Labs. zzuf - multi-purpose fuzzer.
http://caca.zoy.org/wiki/zzuf, 2010.

[7] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley. Un-
leashing Mayhem on Binary Code. In Proceedings of the
2012 IEEE Symposium on Security and Privacy, SP ’12. IEEE
Computer Society, 2012.

[8] K. Claessen and J. Hughes. Testing monadic code with
quickcheck. SIGPLAN Not., 37(12):47–59, Dec. 2002. ISSN
0362-1340. doi: 10.1145/636517.636527.

[9] K. Claessen and J. Hughes. QuickCheck: a lightweight tool
for random testing of Haskell programs. Acm sigplan notices,
46(4):53–64, 2011.
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