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ABSTRACT

Many testing techniques such as generational fuzzing or random
property-based testing require the existence of some sort of random gen-
eration process for the values used as test inputs. Implementing such
generators is usually a task left to end-users, who do their best to come
up with somewhat sensible implementations after several iterations of
trial and error. This necessary effort is of no surprise, implementing good
random data generators is a hard task. It requires deep knowledge about
both the domain of the data being generated, as well as the behavior of
the stochastic process generating such data. In addition, when the data
we want to generate has a large number of possible variations, this pro-
cess is not only intricate, but also very cumbersome.

To mitigate these issues, this thesis explores different ideas for auto-
matically deriving random generators based on existing static informa-
tion. In this light, we design and implement different derivation algo-
rithms in Haskell for obtaining random generators of values encoded us-
ing Algebraic Data Types (ADTs). Although there exists other tools de-
signed directly or indirectly for this very purpose, they are not without
disadvantages. In particular, we aim to tackle the lack of flexibility and
static guarantees in the distribution induced by derived generators. We
show how automatically derived generators for ADTs can be framed us-
ing a simple yet powerful stochastic model. These models can be used to
obtain analytical guarantees about the distribution of values produced
by the derived generators. This, in consequence, can be used to optimize
the stochastic generation parameters of the derived generators towards
target distributions set by the user, providing more flexible derivation
mechanisms.
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Chapter 0

Introduction

Software systems are, for the most part, tested much more poorly than
we like to admit. This is often not due to laziness (except when it is),
neither to lack of investment (except when it is). Testing software effec-
tively is extremely difficult. Even the most formal and theoretically robust
techniques are sometimes seen as a futile countermeasures against the
unquantifiable number of things that can go wrong in our ever-growing
systems. How should we test them then? As expected, this thesis does
not provide anything closer to an answer for this question. Instead, it fo-
cuses particularly on an appealing idea: testing software against unex-
pected inputs using randomly generated data.

1 Fuzzing

Fuzzing [32] is a technique used in penetration testing [1] that involves
providing unexpected inputs to a system under test, and a program that
performs fuzzing to test a program is usually known as a fuzzer. The in-
tuition behind a fuzzer is rather simple: it picks an input from some in-
puts repository, feeds it to the system under test, and monitors it for dif-
ferent kinds of exceptions, e.g., crashes, memory leaks and failed code
assertions. This process is repeated in a loop until something bad hap-
pens in the target system. Then, any anomaly detected in the expected
behavior of the system under test is reported along with the input pro-
ducing it. Figure 1 displays a simplified representation of this approach.

System
Under Test

FuzzerInputs
Source

Bug
Report

Figure 1: Simplified representation of a fuzzing environment.
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As expected, the previous description is extremely oversimplified.
Fuzzers typically use many different approaches to boost the chances
of finding different kinds of vulnerabilities with remarkable success
[5,8,9,12,14–17,23,26,28,29]. Notably, the unexpected inputs used by this
technique can be of a very varied nature, covering the full spectrum be-
tween completely valid values to completely random noise ones. More-
over, the origin of these inputs denotes an important distinction used to
classify different kinds of fuzzing models [25]:

– Mutational Fuzzers: they use an existing set of (usually valid) inputs
that are combined in different ways through randomization. In prac-
tice, they usually rely on an external set of input files provided by
the user, known as a corpus. A mutational fuzzer takes one or more
files from this corpus and produces a mutated version that is as a test
case for the system under test.
While this approach has shown to be quite powerful for finding bugs,
its inherent disadvantage is that the user has to collect and maintain
a carefully curated corpus manually for each kind of input that wants
to test, e.g., for each input file format.

– Generational Fuzzers: they generate inputs from scratch using an
specification or model for the different kinds of inputs they are used
for. In general, generational fuzzers avoid the problem of having to
maintain an external corpus of inputs. However, users must then de-
velop and maintain models of the input types they want to generate.
As expected, creating such models requires a deep domain knowl-
edge, which can be tedious and expensive to achieve.

In this work, we focus particularly on the generational model. Our
aim is to develop automated techniques for random generation of unex-
pected inputs based on statically available information. This information
can be extracted either directly from system under test or from external
sources. In particular, Paper 1 is focused on automatically leveraging on
existing file-format manipulating libraries to derive random input gen-
erators used for fuzzing massively used programs.

Fuzzers are seen in practice as black-box tools acting over complete
programs. In consequence, they are often applied to finished systems to
find vulnerabilities that might have not been discovered during the early
development stages. However, testing smaller pieces of our systems us-
ing randomly generated inputs during development is also a popular
technique. As opposed to unit testing, where programmers are forced to
write and maintain a set of individual test inputs (unit tests), this tech-
nique lets us test each part of our system using randomly generated in-
puts. The next section introduces an attractive variant of this idea.
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2 QuickCheck
Instead of just feeding our software with random inputs and waiting for
unexpected behavior, it is also possible to test our programs using ran-
domly generated inputs in a more controlled way. The idea behind this
is to verify our code against some sort of specification. This specification
can be defined, for instance, as a set of properties that our code must
fulfill for every possible input. Then, these properties can be validated
using a large number of randomly generated inputs. This technique is
known as Random Property-Based Testing (RPBT).

In the Haskell realm, QuickCheck [10] is the de facto tool of this sort.
Originally conceived by Koen Claessen and John Hughes twenty years
ago, this tool counts with many success stories, and inspired the ideas
behind it to be replicated in other programming languages and systems
with remarkable success [2–4, 7, 19–21, 24, 24, 30].

Essentially, using this tool can be seen as composed of two main parts:
testing properties and random generators. This thesis focuses strictly on the
latter, as automating the process of deriving testing specifications can be
seen as a field in its own right [6, 11]. Nonetheless, the following subsec-
tions briefly introduce the reader to both for the sake of completeness.

2.1 Testing Properties

One of the attractive aspects of QuickCheck is its simplicity. To illustrate
this, suppose we write a Haskell function reverse :: [Int ] → [Int ] for
reversing lists of integers. While specifying the expected behavior of this
function, we might want to assert that our implementation is its own
inverse , i.e., reversing a list twice always yields the original value.1 This
desired property of our function can be written in QuickCheck simply
as a Haskell predicate parameterized over its input, which we can think
as being universally quantified:

prop_reverse_ok :: [Int ]→ Bool
prop_reverse_ok xs =

reverse (reverse xs) ≡ xs

Then, verifying that our function holds this property becomes simply
running QuickCheck over it:

ghci> quickCheck prop_reverse_ok
++++ OK, passed 100 tests

What happens under the hood is that QuickCheck will instantiate
every input of our property using a large number of randomly generated
values (lists of integers in our example above), asserting that it holds
(returns True) for all of them.

1In mathematical jargon, we could say that reverse must be involutive.
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Shall any of our properties not hold for some input, QuickCheck
will try to find a minimal counterexample for us to further analyze. For
instance, reversing any list once will not return the original input:

prop_reverse_bad :: [Int ]→ Bool
prop_reverse_bad xs =

reverse xs ≡ xs

This property can be easily refuted using QuickCheck as before:

ghci> quickCheck prop_reverse_bad

*** Failed! Falsifiable (after 3 tests and 1 shrink):
[0,1]

And after a handful random tests, we obtain a minimal counterexam-
ple ([0,1]) which falsifies prop_reverse_bad when used as an input.

This way, running a large number of random tests gives us statistical
confidence about the correctness of our code against its specification.

2.2 Random Generators

One of the reasons behind the simplicity of the previous examples is
that the random generation of test cases is transparently handled for us
by QuickCheck. This is achieved by using Haskell type classes [34]. In
particular, QuickCheck defines the Arbitrary type class for the types that
can be randomly generated:

class Arbitrary a where
arbitrary :: Gen a
shrink :: a → [a ]

The interface of this type class encodes two basic primitives. In first
place, arbitrary specifies a monadic random generator of values of type a .
Such generators are defined in terms of the Gen monad which provides
random generation primitives. Moreover, shrink :: a → [a ] specifies how
a given counterexample (of type a) can be reduced in different smaller
ones. This function is used while reporting minimal counterexample
after a bug is found.

QuickCheck comes equipped with Arbitrary instances for most basic
data types in the Haskell prelude. In particular, our previous testing
examples simply use the default Arbitrary instances for integers and lists.
In this light, it is quite easy to test properties defined in terms of basic
data types using QuickCheck. However, things get more complex when
we start defining our own custom data types.

Algebraic Data Types Haskell has a powerful type system that can be ex-
tended with custom data types defined by the user. For instance, sup-
pose we want to represent simple HTML pages as Haskell values. For
this purpose, we can define the following custom algebraic data type:
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data Html =
Text String
| Sing String
| Tag String Html
| Html :+: Html

This type allows to build pages via four possible constructions: Text
represents plain text values, Sing and Tag represent singular and paired
HTML tags, respectively, and (:+:) concatenates two HTML pages one
after another. These four constructions are known as data constructors
(or constructors for short) and are used to distinguish which variant
of the ADT we are constructing. Each data constructor is defined as a
product of zero or more types known as fields. For instance, Text has a
field of type String , whereas the infix constructor (:+:) has two recursive
fields of type Html . In general, we will say that a data constructor with
no recursive fields is terminal, and non-terminal or recursive otherwise.
Then, the example page:

<html>hello<hr>bye</html>

can be encoded using our freshly defined Html data type as:

Tag "html" (Text "hello" :+: Sing "hr" :+: Text "bye")

Later, suppose we implement two functions over Html values for
simplifying and measuring the size of an HTML page:

simplify :: Html → Html
size :: Html → Int

The concrete implementation of these functions is not relevant here.
What is important, though, is that with these functions in place, we might
be interested in asserting that simplifying an HTML page never returns
a bigger one. This can be encoded with the following QuickCheck prop-
erty:

prop_simplify :: Html → Bool
prop_simplify html =

size (simplify html) 6 size html

However, testing this property using random inputs is not possible
yet. The reason behind this is simple: QuickCheck does not know how
to generate random Htmls to instantiate this property’s input parame-
ter. To solve this issue, we can provide a user defined Arbitrary instance
for Html as shown in Figure 2 (avoiding for simplicity the definition of
shrink ). To generate a random Html value, this generator picks a random
Html data constructor with uniform probability and proceeds to “fill”
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instance Arbitrary Html where
arbitrary = oneof

[Text 〈$〉 arbitrary
,Sing 〈$〉 arbitrary
,Tag 〈$〉 arbitrary 〈?〉 arbitrary
, (:+:) 〈$〉 arbitrary 〈?〉 arbitrary ]

Figure 2: Naive random generator of Html values.

its fields recursively. This definition implements the simplest generation
procedure for Html that is theoretically capable of generating any possi-
ble Html value.

After providing this concrete Arbitrary instance, QuickCheck can
now proceed to test properties involving Html values.

3 Automated Derivation of Generators
The random generator defined above can be written quite mechanically,
so it is of no surprise that automated derivation mechanisms [13, 27]
have emerged to relieve the programmer of the burden of this task—
something specially valuable for large data types! Most of these tools use
Template Haskell [31], the Haskell meta-programming framework, as a
way of introspecting the user code and synthesizing new code upon it.

However, a suitable mechanism for deriving random generators can-
not be as simple as just producing code like the one shown in Figure 2.
Sadly, this naive generator is ridden with flaws.

In practice, QuickCheck users are often aware of some of them, and
an attentive reader might have already recognized some by just inspect-
ing the definition above carefully. Concretely, to implement a suitable
random generator we need to consider (at least) the following challenges:

Unbounded recursion: Every time a recursive subterm is needed, the gen-
erator shown in Figure 2 simply calls itself recursively. This is a common
mistake that can lead to infinite generation loops due to recursive calls
producing (on average) one or more subsequent recursive calls. This
problem can be more or less severe depending mostly on the shape of the
data type our generator produces values of, being a practical limitation
nonetheless. Fortunately, QuickCheck already provides mechanisms to
overcome this issue—this is addressed by all four papers presented in
this thesis.

Generation parameters: The generator from Figure 2 simply picks the next
random constructor in a uniform basis. This is the simplest approach
we can mechanically follow. However, this is hardly the best choice in
practice. In particular, generating values of any data type with more ter-
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minal than recursive data constructors using uniform choices will be bi-
ased towards generating very small values. QuickCheck provides mech-
anisms for adjusting the generation probability of each random choice it
performs. However, doing so carries a second problem: it becomes quite
tricky to assign these probabilities without knowing how they will affect
the overall distribution of generated values—something that can be seen
as a science to its own. Both problems are addressed in detail in Paper 2.

Abstraction level: The generation process encoded in the generator shown
in Figure 2 constructs values using the smallest possible level of granu-
larity: one data constructor at a time. In practice, this technique is often
too weak to generate (with a non-negligible probability) values contain-
ing the complex patterns of values that could be required in order to test
the corner cases of our code, leaving the door open for subtle bugs that
might be never get triggered during the testing phase.

In the other hand, the implementation of our code under test could
rely on internal invariants that are necessary to make it work properly—
think for instance the case of the implementation of data structures like
balanced trees, where its abstract interface must preserve the internal
invariants used by their implementation. Testing this kind of software
becomes much more complicated using the approach described above, as
constructing random values at the abstraction level of data constructors
will be very unlike to generate values satisfying such invariants—this
issue is addressed in details in Paper 3 and Paper 4.

Clearly, all these issues and challenges need to be carefully consid-
ered in order for our generators to be effective at generating useful val-
ues for penetration or random property-based testing. It is the purpose
of this thesis to tackle them in the most automated way possible.

4 Contributions
In this section, I give a more detailed overview of the thesis, which is
based on four papers, published individually in the proceedings of peer-
reviewed international conferences, symposiums and workshops—see
Figure 3 for a simplified roadmap of this work.

4.1 Paper 1: QuickFuzz Testing For Fun And Profit

This paper explores the ideas behind the development of QuickFuzz, a
generational fuzzer using Haskell data types as lightweight grammars.
Unlike other generational fuzzers, where the generation of random in-
puts depends on user-provided specifications or grammars for the ran-
dom inputs they can generate, QuickFuzz leverages on existing data-
handling libraries written in Haskell.

Haskell ecosystem [18] has a large number of existing libraries for in-
teracting with most kinds of structured data we use nowadays, e.g., com-
mon file formats, network packets, public key infrastructure certificates,
etc. The fact that these libraries often define complex data types encoding
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Figure 3: Roadmap of this thesis.

such data is what makes QuickFuzz particularly appealing: these data
types can be a good approximation of the grammar of our data, and we
can obtain random generators for them for free! For this to be effective,
however, we need an automatic mechanism for extracting random gen-
erators from data type definitions, solely based on introspecting the ex-
isting code, and with minimal interaction required by the programmer.

With more than 40 file formats supported for random generation, and
combined with the ability of introducing off-the-shelf mutational fuzzers
into the testing pipeline, QuickFuzz has been shown to be remarkably
useful for discovering bugs on real-world code with minimal effort. Dur-
ing the development of this tool, dozens of security vulnerabilities were
discovered on massively used open-source programs and libraries.

4.2 Paper 2: Branching Processes for QuickCheck Generators

Despite that automatically deriving random generators from data type
definitions can be seen as a mechanical task, doing so too naively can
degrade the performance of the derived generators quite substantially.
The main problem with the derivation mechanism used in QuickFuzz is
that, whenever an automatically derived generator needs to randomly
choose which random construction to generate next, it does so with uni-
form probability across all the possible choices. While this approach is
(theoretically) able to generate the full space of values of any algebraic
data type, empirical results show that it often introduces strong biases
towards generating very small and rather uninteresting values. This lim-
itation is mostly dependent on the shape of the data type being gener-
ated, and cannot be improved nor adjusted once the random generator
is derived at compile time.

While there exists other approaches for solving this problem, we con-
sider that none of them effectively achieves a good trade-off between au-
tomation level and flexibility.
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In this paper, we propose modeling the generation process encoded
into automatically derived generators using branching processes. This sta-
tistical model lets us predict the distribution of values produced by our
generators. This distribution depends on two main factors. First, their
particular data type definition takes an important role on how the data
gets generated each time a recursive sub-term is needed. This is a fixed
part of our model, and represent the invariants introduced by the data
types we generate. Second, the frequency in which our generators pick
each random construction whenever they generate a value also makes
a large difference in the distribution of generated values. Interestingly,
these frequencies are a tunable parameter of our derived generators, and
thus we can optimize them towards a configuration that fits user’s de-
mands by using the prediction model based on branching processes in a
feedback optimization loop. This way, the optimization of parameters de-
pends on a model that can be predicted analytically and, in consequence,
is much cheaper to compute than sampling a large number of random
values every time we evaluate a possible optimization candidate.

The ideas presented in this paper are implemented in an automated
tool for deriving optimized generators called DRAGEN.

Using this approach, we found that the performance of automatically
derived generators can be considerably improved by tuning their gener-
ation parameters at compile time using our stochastic model. In practice,
we found that this can be used to increase the code coverage triggered
by the random values they generate over real-world applications quite
substantially.

4.3 Paper 3: Generating Random Structurally Rich Algebraic Data
Type Values

The previous paper proposes using a stochastic model for automatically
deriving optimized random generators. In principle, this model only con-
templates the information encoded into data type definitions. However,
in practice, much of the structural information of our data is often en-
coded aside of its corresponding types.

In first place, a common limitation of random testing arises when-
ever we try to generate random values to test functions or procedures
branching differently on very specific patterns of inputs. The reason be-
hind this is simple: whenever a function input pattern grows linearly
in the number of matched constructors, the probability of generating a
value satisfying such pattern decreases multiplicatively if we follow the
standard approach, i.e., building random values using one atomic piece
of data (constructor) at a time.

On the other hand, it is common that data type definitions simply do
not encode enough structural information of the actual data they repre-
sent in order for the derivation process to derive useful random genera-
tors. This is particularly the case in the presence of shallow embedded
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domain-specific languages, where data types are often too generic, and
invariants are preserved mostly via their abstract interfaces.

In this paper, we identify two extra sources of structural information
that can be statically extracted and taken advantage of during the gen-
erator derivation process. In first place, every input pattern matching of
a function of interest can be automatically extracted from the user code-
base, and included into the generation process. This lets us generate com-
plex compositions of data constructors at once, ensuring that our random
data will satisfy the input patterns of our code under test, and hence will
be used to test code branches that otherwise could remain untested us-
ing naive generators. Secondly, the abstract interface of our data types of
interest can be analyzed and extracted from the codebase. Each combina-
tor of this interface can be used to generate random data as well, some-
what replicating the behavior a real programmer would follow to inter-
act with the user code in a real-world scenario. This ability also lets us
generate random data preserving the invariants introduced by this inter-
face, and that are not encoded directly in the data type definition.

The ideas presented in this paper are implemented as an extension of
DRAGEN, called DRAGEN2.

Using this approach, it becomes possible to generate random values
by interleaving data constructors, input patterns and abstract interface
function calls. This can effectively improve the performance of our de-
rived generators, which are able to use more domain-specific informa-
tion extracted from the source code in order to generate structured data.

One of the key contributions of this work is to show how the stochas-
tic model of branching processes used previously can be extended to
contemplate these two new sources of structural information. Using this
extended model, we can automatically derive random generators op-
timized towards producing complex distributions of values, parame-
terized by higher-level random constructions other than just data con-
structors, like input patterns and abstract interface function calls. For
instance, it becomes possible to reason about random distributions of
values where certain patterns of constructors appear (on average) in a
given ratio within every generated value. In the same manner, we can
use this model to derive generators which produce random values fol-
lowing a particular distribution of high-level combinators (from abstract
interfaces) used to build them, which can specified by the programmer.

4.4 Paper 4: Deriving Compositional Random Generators

The previous paper provides an extension to the automated derivation
mechanism of random generators proposed originally. This extension en-
ables us to consider additional sources of structural information when
deriving random generators apart from just data type definitions. Each
source of structural information introduces a new set of random con-
structions that can be used by our generators when producing random
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values, i.e., one random construction per each data constructor, function
input pattern and abstract interface combinator.

In principle, we could combine every random construction extracted
from the codebase into a single random generator. However, as our code-
base grows, this practice can become unmanageable. The reason for this
is that different parts of our system could expect different kinds of in-
puts, and therefore, they should be tested using random values resem-
bling such expected inputs. For instance, if we consider a code compiler,
a type checker phase should be tested using both valid and invalid ran-
dom input programs. On the other hand, any subsequent phase would
be implemented under the assumption that they work over syntactically
and/or semantically valid inputs. In this case, testing such phases ef-
fectively would require having a random generator that only produces
somewhat valid inputs—or more generically, inputs satisfying certain
invariants. In this light, our testing framework would benefit from hav-
ing not one, but many specialized random generators depending on the
concrete subsystem to be tested. This is, sadly, not compatible with most
automated generator derivation approaches, where a unique (and rigid)
random generator is synthesized.

In this paper we demonstrate how it is possible to implement a fully
compositional generators’ derivation mechanism. Instead of deriving a
single random generator encompassing every possible random construc-
tion, our approach works by deriving a small specialized generator for
each one. Later, these generators can be combined in different ways using
a simple yet powerful type-level domain-specific specification language.
This domain-specific language lets the programmer specify which ran-
dom constructions are of interest while generating values in a simple
manner, abstracting much of the cumbersome details of writing random
generators by hand. Notably, specifying different random generators us-
ing this approach doesn’t require synthesizing their implementation ev-
ery time. In turn, the user simply specifies each generator variant by re-
ferring to the components of the same common underlying machinery,
which is automatically derived once and for all.

To achieve this compositionality, we use the familiar functor coprod-
uct pattern in Haskell, popularized by Swierstra with the name of Data
Types à la Carte [33]. We extended this programming pattern with the
functionality required in the scope of random generation of values, and
shown how the performance limitations [22] commonly associated to
this pattern can be alleviated by using a self-optimizing representation.

4.5 Statement of Contributions

Paper 1: QuickFuzz Testing For Fun And Profit My contributions to this
project include: i) a generators derivation extension, which contemplates
the common case of existing libraries written using shallow embeddings
of the target file format. Before this extension, such libraries simply could
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not be used due to the lack of domain-specific structure encoded into
data types, which are the main source of information used by QuickFuzz
to derive useful random generators for free, and ii) a complete rewrite of
the testing harness from scratch, using as much meta-programming as
possible in order to ease the task of adding support for new file-format
targets.

Moreover, I actively participated in the technical writing of the jour-
nal paper resulting from this project.

Paper 2: Branching Processes for QuickCheck Generators I developed
a generic meta-programming mechanism for deriving random genera-
tors using this model based on branching processes (the first version of
DRAGEN). This includes developing an adjustable optimization process
for the stochastic parameters, based on different statistical goodness-of-
fit measures. This is hidden behind a simple generators specification in-
terface.

The technical writing of this paper was initially done in equal parts
between Alejandro and I, with John Hughes joining us at later stages
with invaluable feedback.

Paper 3: Generating Random Structurally Rich Algebraic Data Type
Values I extended our previous derivation tool and its underlying stochas-
tic model with support for extracting and generating such patterns auto-
matically. I later extended this mechanism to also contemplate extracting
abstract interfaces from the user codebase, which greatly improved the
performance of the derived generators.

The technical writing of this paper was done by both authors jointly.

Paper 4: Deriving Compositional Random Generators I carried out
most of the technical development of this idea, using both meta-pro-
gramming and type-level features available in Haskell.

The majority of the writing was initially done by me.

This work was funded by the Swedish Foundation for Strategic Re-
search (SSF) under the project Octopi (Ref. RIT17-0023) and WebSec (Ref.
RIT17-0011) as well as the Swedish research agency Vetenskapsrådet.
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ABSTRACT

Fuzzing is a popular technique to find flaws in programs using in-
valid or erroneous inputs but not without its drawbacks. At one hand,
mutational fuzzers require a set of valid inputs as a starting point, in
which modifications are then introduced. On the other hand, genera-
tional fuzzing allows to synthesize somehow valid inputs according to
a specification. Unfortunately, this requires to have a deep knowledge
of the file formats under test to write specifications of them to guide the
test case generation process.

In this paper we introduce an extended and improved version of
QuickFuzz, a tool written in Haskell designed for testing unexpected
inputs of common file formats on third-party software, taking advantage
of off-the-self well known fuzzers.

Unlike other generational fuzzers, QuickFuzz does not require to
write specifications for the files formats in question since it relies on ex-
isting file-format-handling libraries available on the Haskell code reposi-
tory. It supports almost 40 different complex file-types including images,
documents, source code and digital certificates.

In particular, we found QuickFuzz useful enough to discover many
previously unknown vulnerabilities on real-world implementations of
web browsers and image processing libraries among others.





CHAPTER 1. QUICKFUZZ TESTING FOR FUN AND PROFIT 17

1 Introduction

Modern software is able to manipulate complex file formats that encode
richly-structured data such as images, audio, video, HTML documents,
PDF documents or archive files. These entities are usually represented
either as binary files or as text files with a specific structure that must be
correctly interpreted by programs and libraries that work with such data.
Dealing with the low-level nature of such formats involves complex,
error-prone artifacts such as parsers and decoders that must check invari-
ants and handle a significant number of corner cases. At the same time,
bugs and vulnerabilities in programs that handle complex file formats of-
ten have serious consequences that pave the way for security exploits [7].

How can we test this software? As a complement to the usual testing
process, and considering that the space of possible inputs is quite large,
we might want to test how these programs handle unexpected input.

Fuzzing [15, 25, 35] has emerged as a promising tool for finding bugs
in software with complex inputs, and consists in random testing of pro-
grams using potentially invalid or erroneous inputs. There are two ways
of producing invalid inputs: mutational fuzzing involves taking valid in-
puts and altering them through randomization, producing erroneous or
invalid inputs that are fed into the program; and generational fuzzing
(sometimes also known as grammar-based fuzzing) involves generating
invalid inputs from a specification or model of a file format. A program
that performs fuzzing to test a target program is known as a fuzzer.

While fuzzers are powerful tools with impressive bug-finding abil-
ity [16, 22, 29], they are not without disadvantages. Mutational fuzzers
usually rely on an external set of input files which they use as a starting
point. The fuzzer then takes each file and introduces mutations in them
before using them as test cases for the program in question. The user has
to collect and maintain this set of input files manually for each file for-
mat she might want to test. By contrast, generational fuzzers avoid this
problem, but the user must then develop and maintain models of the file
format types she wants to generate. As expected, creating such models
requires a deep domain knowledge of the desired file format and can be
very expensive to formulate.

In this paper, we introduce QuickFuzz, a tool that leverages Haskell’s
QuickCheck [10], the well-known property-based random testing library
and Hackage [18], the community Haskell software repository in con-
junction with off-the-shelf mutational fuzzers to provide automatic fuzz-
ing for several common file formats, without the need of an external set
of input files and without having to develop models for the file types in-
volved. QuickFuzz generates invalid inputs using a mix of generational
and mutational fuzzing to try to discover unexpected behavior in a tar-
get application.
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Hackage already contains Haskell libraries that handle well-known
image, document, archive and media formats. We selected libraries that
have two important features: (a) they provide a data type T that serves as
a lightweight specification and can be used to represent individual files
of these formats, and (b) they provide a function to serialize elements of
type T to write into files. In general we call this function encode that takes
a value of type T and returns a ByteString . Using ready-made Hackage
libraries as models saves the programmers from having to write these
by hand.

The key insight behind QuickFuzz is that we can make random val-
ues of type T using QuickCheck’s generators, the specialized machinery
for type-driven random values generation. Then we serialize the test
cases and pass them to an off-the-shelf fuzzer to randomize. Such muta-
tion is likely to produce a corrupted version of the file. Then, the target
application is executed with the corrupted file as input.

The missing piece of the puzzle is a mechanism to automatically
derive the QuickCheck generators from the definitions of the data types
in the libraries, which we call MegaDeTH.

Finally, if an abnormal termination is detected (for instance, a seg-
mentation fault), the tool will report the input producing the crash.

Thanks to Haskell implementations of file-format-handling libraries
found on Hackage, QuickFuzz currently generates and mutates a large
set of different file types out of the box. However, it is also possible for the
user to add file types by providing a data type T and the suitable serializ-
ing functions. Our framework can derive random generators fully auto-
matically, to be used by QuickFuzz to discover bugs in new applications.

Although QuickFuzz is written in Haskell, we remark that it treats
its target program as a black box, giving it randomly-generated, invalid
files as arguments. Therefore, QuickFuzz can be used to test programs
written in any language.

Our contributions can be summarized as follows:
– We present QuickFuzz, a tool for automatically generating inputs

and fuzzing programs parsing several common types of files. Quick-
Fuzz uses QuickCheck behind the scenes to generate test cases, and
is integrated with fuzzers like Radamsa, Honggfuzz and other bug-
finding tools such as Valgrind and Address Sanitizer.

– We release QuickFuzz2as open-source and free of charge. As far as
we know, QuickFuzz is the first fuzzer to offer the generation and
mutation of almost forty complex file types without requiring the
user to develop the models: just install, select a target program and
wait for crashes!

– We introduce MegaDeTH, a library to derive random generators for
Haskell data types. MegaDeTH is fully automatic and capable of

2The tool is available at https://github.com/CIFASIS/QuickFuzz.

https://github.com/CIFASIS/QuickFuzz
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handling mutually recursive types and deriving instances from ex-
ternal modules. This library can be used to extend QuickFuzz with
new data types. Additionally, we describe the strategy adopted to im-
prove the automated derivation of random generators by using not
only the information found on a data type definition, but the one on
its abstract interface as well. Moreover, we detail and exemplify the
technique used to enforce some semantic properties in the generation
of source code. This is implemented in our tool for widely used pro-
gramming languages like JavaScript, Python and Lua among others.

– We evaluate the practical feasibility of QuickFuzz and show an exten-
sive list of security-related bugs discovered using QuickFuzz in com-
plex real-world applications like browsers, image-processing utilities
and file archivers among others.

This paper is a revised and extended version of [17] which appeared
in the Haskell Symposium 2016. This new version brings many theoreti-
cal and experimental contributions.

First, we extended our tool with the improved random generators
using the information obtained from the abstract interface available for
every library used.

Second, in the case of the source code generation, we presented a
technique to enforce semantic properties immediately after the genera-
tion. We implemented this approach using meta-programming, in order
to improve the random code generation of some widely used program-
ming languages.

Third, we added three sets of experiments to explore how our tool
generates and mutates files. The related work section and the experi-
ments comparing to other fuzzers was also expanded to cover the latest
developments in the field.

Finally, QuickFuzz now supports a greater number of file formats,
including complex file formats found in public key infrastructure such
as ASN.1, X509 and CRT certificates. Using all the proposed extensions,
we have found more security related bugs, updating our results and
conclusion sections accordingly.

The rest of the paper is organized as follows. Section 2 introduces
fuzzing and the functional programming concepts useful to perform
value generation. Section 3 provides an overview of how QuickFuzz
works using an example. Section 4 discusses how to automatically derive
random generators using MegaDeTH. In Section 5 we highlight some of
the key principles in the design and implementation of our tool using the
QuickCheck framework. Later, in Section 6, we perform an evaluation of
its applicability. Section 7 presents related work and Section 8 concludes.
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2 Background
2.1 Fuzzers

Fuzzers are popular tools to test how a program handles unexpected input.
There are two approaches for fuzzing [26]: mutational and generational.

Mutational fuzzers These tools produce inputs for testing programs tak-
ing valid inputs and altering them through randomization, producing
erroneous or invalid inputs that are fed into the program. Typically they
work producing a random mutation at the bit or byte level.

Nowadays, there are plenty of robust and fast mutational fuzzers. For
instance, zzuf [6] is a fuzzer developed by Caca Labs that produces mu-
tations in the program input automatically hooking the functions to read
from files or network interfaces before a program is started. When the
program reads an input, zzuf randomly flips a small percentage of bits,
corrupting the data. Another popular mutational fuzzer is radamsa [29].
It was developed by the Oulu university secure programming group and
works at the byte level randomly adding, removing or changing com-
plete sequence of bytes of the program input. It features a large amount
of useful mutations to detect bugs and vulnerabilities.

Both radamsa and zzuf are dumb mutation fuzzers since they do
not use any feedback provided by the actual execution of the program
to test. In the last few years, feedback-driven mutational fuzzers such
as american fuzzy lop [22] and honggfuzz [16] were developed. These
fuzzers use lightweight program instrumentation to collect information
of every execution and use it to guide the fuzzing procedure.

While mutational fuzzers are one of the simpler and more popular
type of fuzzers to test programs, they still require a good initial corpus
to mutate in order to be effective.

Generational fuzzers These tools produce inputs for testing programs
generating invalid or unexpected inputs from a specification or model
of a file format.

This type of fuzzers are also popular in testing. For instance, one
of the most mature and commercially supported generational fuzzers
is Peach [11]. It was originally written in Python in 2007, and later re-
written in C# for the latest release. It provides a wide set of features
for generation and mutation, as well as monitoring remote processes.
However, in order to start fuzzing, it requires the specification of two
main components to generate and mutate program inputs:

– Data Models: a formal description of how data is composed in order
to be able to generate fuzzed data.

– Target: a formal description of how data can be mutated and how to
detect unexpected behavior in monitored software.
As expected, the main issue with Peach is that the user has to write

these configuration files, which requires very specific domain knowledge.
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Another option is Sulley [31], a fuzzing engine and framework in Python.
It is frequently presented as a simpler alternative to Peach since the
model specification can be written using Python code. A more recent
alternative open-sourced by Mozilla in 2015 is Dharma [27], a generation-
based, context-free grammar fuzzer also in Python. It also requires the
specification of the data to generate, but it uses a context-free grammar
in a simple plain text format.

In recent years, tools like AUTOGRAM [19] and GLADE [4] helped
to learn and syntetize inputs grammars to test programs. These tools
start from valid input files and using the analyzed program itself, they
approximate the input grammar. AUTOGRAM uses dynamic taint anal-
ysis to syntetize the input grammar while GLADE executes the program
as an oracle to answer membership queries (i.e., whether a given input
is valid). Later such grammars can be used as model in generational
fuzzers [4].

2.2 Haskell

Haskell is a general-purpose purely-functional programming language
[23]. It provides a powerful type system with highly-expressive user-
defined algebraic data types. With the power to precisely constrain the
values allowed in a program, types in Haskell can serve as adequate
lightweight specifications.

Data Types Data types in Haskell are defined using one or more construc-
tors. A constructor is a tag that represents a way of creating a data struc-
ture and it can have zero or more arguments of any other type.

For instance, we can define the List a data type representing lists of
values of type a by using two constructors: Nil represents the empty list,
while Cons represents a non-empty list formed by combining a value of
type a and a list (possibly empty) as a tail. Note that this is a recursive
type definition:

data List a = Nil | Cons a (List a)

As an example, we define a few functions that we are going to use in
the rest of this work:

length :: List a → Int
length Nil = 0
length (Cons x xs) = 1+length xs

snoc :: a → List a → List a
snoc x Nil = Cons x Nil
snoc x (Cons y ys) = Cons y (snoc x ys)

reverse :: List a → List a
reverse Nil = Nil
reverse (Cons x xs) = snoc x (reverse xs)
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The function length computes the length of a given list, snoc adds an
element at the end of the list and finally reverse reverses the entire list.
Their definitions are straightforward applications of pattern-matching
and recursion. Free type variables in types, such as a above, are implicitly
universally quantified.

Type Classes Haskell provides a powerful overloading system based on
the notion of a type class. Broadly speaking, a type class is a set of types
with a common abstract interface. The functions defined in the interface
are said to be overloaded since they can be used on values of any member
of the type class. In practice, membership in a type class is defined by
means of an instance, i.e. a concrete definition of the functions in the
interface specialized to the chosen type. For example, Haskell includes
a built-in type class called Eq which defines the equality relation (≡) for
a given type. Assuming that a is in the Eq type class, we can define an
instance of Eq for List a :

instance Eq a ⇒ Eq (List a) where
Nil ≡ Nil = True
(Cons x xs) ≡ (Cons y ys) = (x ≡ y) ∧ (xs ≡ ys)

≡ = False

Note that the (≡) operator is used on two different types: in the ex-
pression x ≡ y it uses the definition given in the instance for Eq a (equal-
ity on a), while in the expression xs ≡ ys it is a recursive call to the (≡)
operator being defined (equality on List a). Haskell uses the type sys-
tem to dispatch and resolve this overloading.

Applicative Functors In this work, we use a well-known abstraction for
structuring side-effects in Haskell, namely applicative functors [24]. Haskell
being a pure language means that all function results are fully and
uniquely determined by the function’s arguments, in principle leaving
no room for effects such as random-number generation or exceptions,
among others. However, such effects can be encoded in a pure language
by enriching the output types of functions, e.g. pseudo-random num-
bers could be achieved by explicitly threading a seed over the whole pro-
gram. Applicative functors is one of the ways in which we can hide this
necessary boiler plate to implement effects.

Applicative functors in GHC are implemented as a type class. In
order to define an applicative functor one has to provide definitions of
two functions, pure and (〈?〉), with the types given below.

class Applicative p where
pure :: a → p a
(〈?〉) :: p (a → b)→ p a → p b

The function pure inserts pure values into the applicative structure
(the boiler plate), and (〈?〉) gives us a way to “apply” a function inside
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the structure to an argument. Due to overloading, computations written
using this interface can be used with any applicative effect.

For example, assume that we have a function (+) :: Int → Int → Int
that adds two numbers, and that we have a type RNG with an instance
Applicative RNG that represents random-number generation, and more-
over that there is a value gen :: RNG Int that produces a random Int .
We can express a computation that adds two random numbers using the
applicative interface as follows: pure (+) 〈?〉 gen 〈?〉 gen . This expression
has type RNG Int (which can be read as “an Int produced potentially
from random data”), and it can be further used in other applicative com-
putations as needed.

Hackage This work draws on packages found in Hackage. Hackage is
the Haskell community’s central package archive. As we will explain,
we take from this archive the data types used to generate different file
formats. For instance, the JuicyPixels library is available in Hackage [36],
and it has support for reading and writing different image formats.

Hackage is a fundamental part of QuickFuzz, since it provides all the
lightweight specifications for free and we carefully designed QuickFuzz
to easily include new formats as they appear in this code repository.

2.3 QuickCheck

QuickCheck is a tool that aids the programmer in formulating and test-
ing properties of programs, first introduced as a Haskell library by Koen
Claessen and John Hughes [10]. QuickCheck presents mechanisms to
generate random values of a given type, as well as a simple language to
build new generators and specify properties in a modular fashion. Once
the generators have been defined, the properties are tested by generat-
ing a large amount of random values.

Properties To use this tool, a programmer should define suitable proper-
ties that the code under test must satisfy. QuickCheck defines a property
basically as a predicate, i.e. a function that returns a boolean value. For
instance, we can check if the size of a list is preserved when we reverse it:

prop_reverseSize :: List a → Bool
prop_reverseSize xs = length xs ≡ length (reverse xs)

QuickCheck will try to falsify the property by generating random
values of type List a until a counter example is found.

Generators QuickCheck requires the programmer to implement a gener-
ator for List a in order to test properties involving such data type, like
prop_reverseSize above. The tool defines an applicative functor Gen and
a new type class called Arbitrary for the data types whose values can
be generated. Its abstract interface consists solely of a function that re-
turns a generator for the data type a being instantiated. The applicative
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functor Gen provides the required mechanisms to generate random val-
ues. As seen in the previous subsection, effectful behavior requires an
applicative structure:

class Arbitrary a where
arbitrary :: Gen a

Then it is up to the programmer to define a proper instance of Arbitrary
for List a using the tools provided by QuickCheck :

instance Arbitrary a ⇒ Arbitrary (List a) where
arbitrary = genList
where

genList = oneof [genNil , genCons ]
genNil = pure Nil
genCons = pure Cons

〈?〉(arbitrary :: Gen a)
〈?〉(arbitrary :: Gen (List a))

The function oneof chooses with the same probability between a Nil
value generator or a Cons value generator. Note that genCons calls to
arbitrary recursively in order to get a generated List a for its inner list
parameter.

However, the previous implementation has a problem; it is possible
for oneof to always choose a genCons , getting the computation in an end-
less loop. To solve this, QuickCheck provides tools to limit the maximum
value generation size. An improved implementation uses the size depen-
dent functions sized and resize , which take care of the maximum genera-
tion size, decreasing it after every recursive step. When the size reaches
zero, the generation always returns Nil , ensuring that the value construc-
tion process never gets stuck in an infinite loop. The generation size is
controlled externally and is represented in this case by the n parameter.

instance Arbitrary a ⇒ Arbitrary (List a) where
arbitrary = sized genList
where

genList n = oneof [genNil , genCons n ]
genNil = pure Nil
genCons 0 = genNil
genCons n = pure Cons

〈?〉(resize (n−1 ) arbitrary :: Gen Int)
〈?〉(resize (n−1 ) arbitrary :: Gen IntList)

Using this instance, QuickCheck can properly generate arbitrary val-
ues of List a and test properties using them:

quickCheck prop_reverseSize
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and if the test passed for all the randomly generated values, QuickCheck
will answer:

++++ OK, passed 100 tests

3 A Quick Tour of QuickFuzz
In this section, we will show QuickFuzz in action with a simple example.
More specifically, how to discover bugs in giffix, a small command line
utility from giflib [13] that attempts to fix broken Gif images. Our tool
has built-in support for the generation of Gif files using the JuicyPixels
library [36].

In order to find test cases to trigger bugs in a target program, our tool
only requires from the user:

– A file format name to generate fuzzed inputs
– A command line to run the target program

It is worth to mention that no instrumentation is required in order to
run the target program. For instance, to launch a fuzzing campaign on
giffix, we simply execute:

$ QuickFuzz Gif ’giffix @@’ -a radamsa -s 10

Our tool replaces @@ by a random filename that will represent the
fuzzed Gif file before executing the corresponding command line. The
next parameter specifies the mutational fuzzer it uses (radamsa in this
example) and the last one is the abstract maximum size in the Gif value
generation. Such limitation will effectively bound the memory and the
CPU time used during the file generation.

After a few seconds, QuickFuzz stops since it finds an execution that
fails with a segmentation fault. At this point we can examine the output
directory (outdir by default) to see the Gif file produced by our tool that
caused giffix to fail.

Figure 1 shows the QuickFuzz pipeline and architecture. An execu-
tion of QuickFuzz consists of three phases: high-level fuzzing, low-level
fuzzing and execution. The diagram also shows the interaction between
the compile-time and the run-time of QuickFuzz. Let us take a look at
what happens in each phase in the giffix example.

3.1 High-Level Fuzzing

During this phase, QuickFuzz generates values of the data type T that
represents the file format of the input to the target program. It relies on
the tools provided by QuickCheck. More specifically, the random num-
ber generation tools that can be used to construct randomized structured
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Figure 1: Summary of the random generators deriving using MegaDeTH
at compile-time and the test case generation using QuickFuzz at run-
time where gray nodes represent inputs provided by a user and bold
nodes represent outputs.

data in a compositionally manner. In our example this representation
type T (borrowed from JuicyPixels) is called GifFile.

data GifFile = GifFile Header Images Looping

data Looping
= LoopingNever
| LoopingForever
| LoopingRepeat Int

A GifFile contains a header (of type Header ), the raw bitmap images
(of type Images), and a looping behavior (of type Looping), specified by
three type constructors denoting the possible behaviors. We left Header
and Images data types unspecified for the sake of the example. Note that
randomly generated elements of type GifFile might not be valid Gif files,
since the type system is unable to encode all invariants that should hold
among the parts of the value. For example, the header might specify a
width and height that doesn’t match the bitmap data. For this reason, we
consider that this step corresponds to generational fuzzing, where the
data type definition serves as a lightweight approximate model of the
Gif file format which generates potentially invalid instances of it.

After generating a value of type GifFile with QuickCheck, we use the
encode function for this file type to serialize the GifFile into a sequence
of bytes, which is written into the output directory for further inspection
by the user. Finally, the result of this phase is a Gif image, most likely
corrupted.

3.2 Low-Level Fuzzing

Usually the use of high-level fuzzing produced by the values generated
by QuickCheck is not enough to trigger some interesting bugs. Therefore,
this phase relies on an off-the-shelf mutation fuzzer to introduce errors
and mutations at the bit level on the ByteString produced by the previous
step. In particular, the current version supports the following fuzzers:
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– Zzuf: a transparent application input fuzzer by Caca Labs [6].
– Radamsa: a general purpose fuzzer developed by the Oulu Univer-

sity Secure Programming Group [29].
– Honggfuzz: a general purpose fuzzer developed by Google [16].

One of the key principles of the design of QuickFuzz was to require
no parameter tuning in the use of third party fuzzers and bug-detection
tools. Usually, the use of mutational fuzzers requires fine-tuning of some
critical parameters. Instead, we decided to incorporate default values to
perform an effective fuzzing campaign even without fine-tuning values
like mutation rates.

After this phase, the result will be a very corrupted Gif file thanks to
the combination of high-level and low-level fuzzing.

3.3 Execution

The final phase involves running the target program with the mutated
file as input and check if it produces an abnormal termination. For each
test case file producing a runtime failure, we can also find in the output
directory the intermediate values for each step of the process:

– A text file with the printed value generated by QuickCheck
– The test case file before the mutation by the mutational fuzzer
– The actual mutated test case file which was passed as input to the

target program and resulted in failure

Using this information, developers can examine how the test case file
was corrupted in order to understand why their program failed and how
it can be fixed.

After corrupting a few Gif files, QuickFuzz finds a test case to re-
produce a heap-based overflow in giffix (CVE-2015-7555). This issue is
caused by the lack of validation of the size of the logical screen and the
size of the actual Gif frames. In fact, if we run the tool during no more
than 5 minutes in a single core, we will obtain dozens of test cases trigger-
ing failed executions (crashes and aborts). Crash de-duplication is cur-
rently outside the scope of our tool, so we manually checked the back-
traces using a debugger and determined that giffix was failing in 3 dis-
tinctive ways.

The root cause of such crashes can be the same, for instance if the
program is performing a read out-of-bounds. Nevertheless, QuickFuzz
can still obtain valuable information finding different crashes associated
with the same issue: they can be very useful to determine if the original
issue is exploitable or not.

Additionally, QuickFuzz can use Valgrind [28] and Address Sanitizer
[33] to detect more subtle bugs like a read out-of-bounds that would not
cause a segmentation fault or the use of uninitialized memory.
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4 Automatically Deriving Random Generators
In this section we explain the compilation-time stage of QuickFuzz, that
can be separated into three methodologies depending on how the file
format was implemented, and which file format is in order to enforce
information not coded in the library:

– Automatically deriving Arbitrary instances for target file formats
data types. Explained in subsection 4.1.

– Crawling libraries interfaces related to the generation of the target
file formats, and then, generating a higher level structure that rep-
resents manipulations of values using those interfaces. Explained in
subsection 4.2.

– Post-processing the arbitrary generated values to enforce specific
semantic properties. In particular, we use such technique to improve
source code generation. Explained in subsection 4.3.

The last two stages are not required for every file format generation
and fuzzing, however, they improve the variety of generated values as
discussed on their respective subsections.

4.1 MegaDeTH

Mega Derivation TH (MegaDeTH) is a tool that gives the user the ability
to provide class instances for a given type, taking care to provide suitable
class instances automatically. As an example, we will analyze the GifFile
data type:

data GifFile = GifFile Header Images Looping

data Looping
= LoopingNever
| LoopingForever
| LoopingRepeat Int

In order to define an Arbitrary instance for GifFile, the programmer
has to define such instances for Header , Images and Looping as well. We
will refer to GifFile as our target data type, since it is the top-level data
type we are looking to generate. Also, we will refer to Header , Images
and Looping as the nested data types of GifFile . If any of these data types
define further nested data types, this process has to be repeated until
every data type involved in the construction of GifFile is a member of
the Arbitrary type class.

Since Haskell benefits the practice of defining custom data type in an
algebraic way, a data type definition can be seen as a hierarchical struc-
ture. Hence, deriving Arbitrary instances for every data type present at
the hierarchy can be a repetitive task. MegaDeTH offers a solution to this
problem: it gives the user a way to thoroughly derive instances for all the
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intermediate data types that are needed to make the desired data type
instance work.

MegaDeTH was implemented using Template Haskell [34], a meta-
programming mechanism built into GHC that is extremely useful to pro-
cess the syntax tree of Haskell programs and to insert new declarations
at compilation time. We use the power of Template Haskell to extract all
the nested types for a given type and derive a class instance for each one
of them, finally instantiating the top-level data type. Since Haskell gives
the user the possibility of writing mutually recursive types, MegaDeTH
implements a topological sort to find a suitable order in which to instanti-
ate each data type satisfying their type dependencies.

We can simply derive all the required instances using MegaDeTH’s
function devArbitrary that automatically generates the following instances
(among others), simplified for the sake of understanding:

instance Arbitrary Looping where
arbitrary = sized gen
where

gen n = oneof
[pure LoopingNever
, pure LoopingForever
, pure LoopingRepeat
〈?〉(resize (n−1 ) arbitrary :: Gen Int)
]

instance Arbitrary GifFile where
arbitrary = sized gen
where

gen n = pure GifFile
〈?〉(resize (n−1 ) arbitrary :: Gen Header)
〈?〉(resize (n−1 ) arbitrary :: Gen Images)
〈?〉(resize (n−1 ) arbitrary :: Gen Looping)

As we can see, the derived code reduces the size whenever a type
constructor is used and select which one is to be used with QuickCheck’s
oneof function. These automatic generated random generators follow
directly the ideas presented in Section 4, that is to choose between all the
available constructors and generate the required arguments of it.

However, it is not always the case that we can choose between avail-
able constructors in order to generate rich structured values. We explore
the limitations of this approach with further detail. The next example in-
troduces a different manner to define a data type which exploits the lim-
itations of MegaDeTH, and serves as introduction to the solution.

Designing a Html manipulating library One of the main decisions involved
when designing a domain-specific language [20] (DSL) manipulation li-
brary is the level of embedding this DSL will have. The most common ap-
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proaches are deep embedding and shallow embedding [1]. Deep embedded
DSLs usually define an internal intermediate representation of the terms
this language can state, along with functions to transform this interme-
diate representation forth and/or back to the target representation. In
this kind of embedding, the domain-specific invariants are mainly pre-
served by the internal representation. The previously presented GifFile
data type is an example of this technique. On the other hand, shallow
embedded DSLs often use a simpler internal representation, leading the
task of preserving the domain-specific invariants to the functions at the
library abstract interface.

Since HTML is a markup language, it is essentially conformed by
plain text. Hence, instead of defining a complex data type using a dif-
ferent type constructor for each HTML tag, the library designer could
be tempted to use a shallow embedding representation, employing the
same plain text representation for the library internal implementation:

module Html where

type Html = String

head :: Html → Html
body :: Html → Html
div :: Html → Html
hruler :: Html
(〈+〉) :: Html → Html → Html

toHtml :: String → Html
renderHtml :: Html → ByteString

In the definition above, the Html data type is a synonym to the String
data type. Thus, the functions on its abstract interface are basically String
manipulating functions with the implicit assumption that if they take a
correct HTML, they will return a correct HTML, for instance:

head :: Html → Html
head hd = "<head>"++ hd ++ "</head>"

hruler :: Html
hruler = "</hr>"

(〈+〉) :: Html → Html → Html
h1 〈+〉 h2 = h1 ++ h2

Given that our guide in the derivation of random generators is the
data type, MegaDeTH needs it to be structurally complex in order to
generate complex data, remember that we based our generators on the
assumption that we can choose with the same probability between dif-
ferent constructors in order to generate random values. If we derive a
random generator for the given Html data type, its type definition does
not provide enough structure to generate useful random values. Instead,
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the generated Arbitrary instance delegates this task to such instance of
the String data type:

instance Arbitrary Html where
arbitrary = (arbitrary :: Gen String)

The resulting Html values generated by this Arbitrary instance are
just random strings, which rarely represents a valid Html value. There-
fore, this kind of generators are useless for our purpose of discovering
bugs on complex software parsing markup languages such as HTML.

This approach to define libraries is common to find in the wild, being
blaze-html [21] or language-css [2] some examples of this. Instead of dis-
carding them, next subsection introduces a different approach we took
to derive powerful Arbitrary instances for this kind of libraries.

4.2 Encoding functions information into actions

Haskell’s expressive power allows the library programmer to define a
file format representation as a custom data type in several ways. As
we have seen previously, MegaDeTH derive useful Arbitrary instances
when the programmer had encoded invariants directly in the data type.
On the other hand, as we have seen in the previous subsection, those
invariants can be forced in the operations declared in the data type ab-
stract interface. These operations manipulate the values of the data type,
transforming well formed values into well formed results.

Since we need data type constructors to be able to use MegaDeTH,
we use the concept of Actions [9]. Given a type T we can look up all the
functions that return a T value and think of them as a way to create a
new T value and call these functions actions. Henceforth, we can define
a new data type where each function that creates a T value defines a
constructor in this new type. In general, for a given data type we will
refer to its actions-oriented data type by simply as its actions data type.

In order to illustrate this technique, we will reuse the Html manipu-
lating library example defined in the previous subsection:

module Html where

type Html = String

To build a complex Html document, the programmer should use the
functions defined in the abstract interface of this module. For example, a
simple Html document could be represented as follows:

myPage :: Html
myPage =

head (toHtml "my head")
〈+〉 body (div (toHtml "text")

〈+〉 hruler
〈+〉 div (toHtml "more text"))
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The Html actions data type can be automatically generated, where
each constructor represents a possible action over the original data type,
whose type parameters corresponds to the ones at the original function
this action intends to express. Note that, if an action has a parameter that
comprises the original data type, it is replaced for its actions-oriented
one, making this a recursively defined data type.

data HtmlAction
= Action_head HtmlAction
| Action_body HtmlAction
| Action_div HtmlAction
| Action_hruler
| Action_toHtml String
| Action_+ HtmlAction HtmlAction

Note that renderHtml will play the role of the encoding function in
our representation, since it gives us a way to serialize Html values. Also,
is worth to mention that it is not included as an action, since it does not
return an Html value.

The previous value could be encoded using actions as follows:

myPageActions :: HtmlAction
myPageActions =
(Action_head (Action_toHtml "my head"))
‘Action_+‘
(Action_body
((Action_div (Action_toHtml "text")
‘Action_+‘

Action_hruler)
‘Action_+‘

Action_div (Action_toHtml "more text")))

Once an actions data type is derived for a given data type, a value
of its type describes a particular composition of functions that returns a
value of the original data type. Hence, we need a function performHtml
that performs an action using the underlying implementation of the inter-
face functions, returning corresponding values of the original type.

performHtml :: HtmlAction → Html
performHtml (Action_head v) = head (performHtml v)
performHtml (Action_body v) = body (performHtml v)
performHtml (Action_div v) = div (performHtml v)
performHtml Action_hruler = hruler
performHtml (Action_toHtml v) = toHtml v
performHtml (Action_+ v1 v2 ) =
(performHtml v1 ) 〈+〉(performHtml v2 )
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Writing the action data type for common target data types is usually
an straightforward task. A similar approach was taken in [3] in order to
manually derive random generators for a particular data type of interest.
However, this task also becomes repetitive, specially when the target
data type contains several functions on its abstract interface. That is the
reason why we automate this process by using Template Haskell. The
function devActions is responsible for this, generating at compile time
the actions data type and the performing function for a target data type.
This process can be described as follows:

Step 1. Crawl the modules where the target data type is present, extract-
ing all type constructors and functions declarations.

Step 2. Find any declarations that return a value of the target data type.
Each one will become a type constructor at the actions data type.

Step 3. Generate the actions data type and the performing function for
the target data type by using the previously obtained actions.

Once the actions data type and performing function have been gen-
erated for a given target data type, it is possible to use MegaDeTH to
obtain an Arbitrary instance for the actions data type, and then, we can
obtain such instance for the target data type by simply performing an ar-
bitrary value of the first one:

instance Arbitrary Html where
arbitrary = pure performHtml

〈?〉(arbitrary :: Gen HtmlAction)

We found this actions-oriented approach to be a convenient way to
deal with Haskell libraries with no restrictive type definitions, wrap-
ping their interfaces with a higher level structure and deriving suitable
Arbitrary instances for them. Given that, it is possible to define useful
Arbitrary instances for a variety of target data types based on the abstrac-
tions defined by the library writer, regardless of how the library was im-
plemented.

There are limitations related to the generation of the actions data
type. One of them involves definitions using complex types wrapping
the target data type. For instance, suppose we extend the Html module
adding a function for splitting Html values:

split :: Html → (Html ,Html)

The result type for split does not match the target data type. However,
we would like to translate it into an action as well, since the target data
type (Html ) is somehow wrapped by its result type ((Html ,Html)). In
order to translate split into an action, we need to know beforehand how
to extract the target data type values from the wrapped value.
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Another limitation is related to the special treatment required by poly-
morphic function definitions. Remember the definition of the polymor-
phic data type List a which represents a list of elements of type a , where
a could be any data type:

data List a = Nil | Cons a (List a)

We can define the following polymorphic functions for all a .

append :: a → List a → List a
concat :: List a → List a → List a

Our current approach can only handle non-polymorphic functions.
We use a naive workaround to solve this consisting on instantiating ev-
ery polymorphic function at the abstract interface of a module into non-
polymorphic ones. This instantiation process is driven by the user, who
decides which data types are interesting enough to be replaced. For in-
stance, if the user decides to instantiate the previous list-handling func-
tions with Int and String data types, our tool generates the following
functions:

append_1 :: Int → List Int → List Int
append_2 :: String → List String → List String
concat_1 :: List Int → List Int → List Int
concat_2 :: List String → List String → List String

Then, these instantiated functions are treated like any other non-
polymorphic ones at the stage of deciding which ones will be used as
actions.

4.3 Enforcing Variable Coherence

Using the previously explained machinery, our tool can randomly gen-
erate source code from various programming languages such as Python,
JavaScript, Lua and Bash. The generation process relies on the type rep-
resenting the abstract syntax tree (AST) of the code of each language.

Unfortunately, we found that automatically derived generators for
such languages are not always effective at the generation of complex
test cases, since they cannot account with all the invariants required for
source code files to be semantically correct. In particular, one of the things
that random code cannot account for is variable coherence, i.e., when we
use a variable, it has to be defined (or declared).

We can see in the example below where QuickFuzz generates a com-
plete program with variables and assignments but without any sense nor
coherence between them. For example, the following program is rejected
by any compiler within one of the first passes.
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rpa = kk
meg = −18.3 == p
i z e = l e

In order to tackle this issue, we developed a generic technique to
enforce properties in the resulting generated values (in this case, Python
code). In particular, our goal is to correct generated source code as a first
step to use QuickFuzz to test compilers and interpreters in deep stages
of the parsing and executing process.

While there are some tools to test compilers, for instance CSmith [39]
for stressing C compilers, they are specific tools developed for certain
languages. Our approach is different, since we aim to develop a general
technique that works in different complex languages provided some
general guidance.

In this work, we decided to enforce variable coherence by making
some corrections in the freshly generated test case. QuickFuzz goes
through its AST collecting declared variables in a pool of variables iden-
tifications and changing unknown variables for previously declared vari-
ables arbitrarily taken from that pool. The special case when the pool is
empty and a variable is required is sorted by generating an arbitrary con-
stant expression.

As result we get programs where every variable used is already de-
fined before it is used.

rpa = 4
meg = −18.3 == rpa
i z e = meg

As we have seen in this section, it is possible to enforce user knowl-
edge not encoded in either the type nor the library of a desired source
code. It is also worth noting that this approach is as general as it can be.
Therefore, we can implement complex invariants based on how we want
to post-process the AST with all the information this structures provide.

5 Detecting Unexpected Termination of Programs
This section details how we defined suitable properties in QuickCheck
to perform the different phases of the fuzzing process and detect unex-
pected termination of programs.

Detecting Unexpected Termination in Programs In Haskell, a program exe-
cution using certain arguments can be summarized using this type:

type Cmd = (FilePath, [String ])

First, we defined the notion of a failed execution. In our tool a program
execution fails if we detect an abnormal termination. According to the
POSIX.1-1990 standard, a program can be abnormally terminated after
receiving the following signals:
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– A SIGILL when it tries to execute an illegal instruction
– A SIGABRT when it called abort
– A SIGFPE when it raised a floating point exception
– A SIGSEGV when it accessed an invalid memory reference
– A SIGKILL at any time (usually when the operating system detects it

is consuming too many resources)

After a process finishes, it is possible to detect signals associated
with failed executions by examining its exit status code. Traditionally
in GNU/Linux systems a process which exits with a zero exit status
has succeeded, while a non-zero exit status indicates failure. When a
process terminates with a signal number n, a shell sets the exit status to
a value greater than 128. Most of the shells use 128 + n. We capture such
condition in the Haskell function has_failed , in order to catch when a
program finished abnormally:

has_failed :: ExitCode → Bool
has_failed (ExitFailure n) = (n<0 ∨ n>128 ) ∧ n 6≡ 143
has_failed ExitSuccess = False

We only excluded SIGTERM (with exit status of 143) since we want
to be able to use a timeout in order to catch long executions without
considering them failed.

High-Level Fuzzing Properties In order to use QuickCheck to uncover
failed executions in programs, we need to define a property to check.
Given an executable program and some arguments, QuickFuzz tries to
verify that there is no failed execution as we defined above for arbitrary
inputs. We call this property prop_NoFail . It serializes inputs to files and
executes a given program. Its definition is very straightforward:

prop_NoFail :: Cmd → (a → ByteString)→ FilePath → a → Property
prop_NoFail pcmd encode filename x = do

run (write filename (encode x ))
ret ← run (execute pcmd)
assert (¬ (has_failed ret))

After that, we can QuickCheck the property of no-failed executions in-
stantiating prop_NoFail with suitable values. For instance, let us assume
we want to test the conversion from Gif to Png images using ImageMag-
ick. The usual command to achieve this would be:

$ convert src.gif dest.png

In terms of prop_NoFail , to test the command above we call the
QuickCheck function using the following property:
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let cmd = ("convert", ["src.gif","dest.png"])
in prop_NoFail cmd encodeGif "src.gif"

where encodeGif is a function to serialize GifFiles. Finally, QuickCheck
will take care of the GifFile generation, reporting any value that pro-
duces a failed assert in prop_NoFail .

Low-Level Fuzzing Properties In the next phase of the fuzzing process,
we enhance the value generation of QuickCheck with the systematic file
corruption produced by off-the-shelf fuzzers. Intuitively, we augment
prop_NoFail with a low-level fuzzing procedure abstracted as a call to
the fuzz function.

fuzz :: Cmd → FilePath → IO ()

After calling fuzz , the content of a file will be changed somehow. Us-
ing this new function, we define a new property called prop_NoFailFuzzed
which mutates the serialized file before the execution takes place:

prop_NoFailFuzzed :: Cmd → Cmd → (a → ByteString)
→ FilePath → a → Property

prop_NoFailFuzzed pcmd fcmd encode filename x = do
run (write filename (encode x ))
run (fuzz fcmd filename)
ret ← run (execute pcmd)
assert (¬ (has_failed ret))

Finally, is up to QuickCheck to find a counterexample of prop_NoFailFuzzed .
This counter-example is a witness which causes the target program to
fail execution.

As result of this process we can test any compiled program, written in
any language, with a plethora of low-level fuzzers with prop_NoFailFuzzed .

6 Evaluation
In this section we will describe different experiments to understand how
QuickFuzz is generating and mutating input files. From the extensive
list of file formats supported by QuickFuzz, shown in Figure 6a, we have
selected five of them to perform our experiments: Zip, Png, Jpeg, Xml
and Svg. We have selected these because they are binary and human-
readable markup formats in different applications. We aim to observe
how QuickFuzz behaves in the generation and fuzzing among those.
Since the generation and fuzzing are intrinsically a random procedure,
each experimental measure detailed in this section was repeated 10 times
in a dedicated core of an Intel i7 running at 3.40GHz.

6.1 Generation Size

An important parameter for generational fuzzers is the maximum size
of the resulting file. Such value should be carefully controlled, allowing
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the user to set it, according to the resources available for the fuzzing
campaign. Otherwise, if the file generation results in a very large number
of tiny input files or extremely large ones, it will not be effective to detect
bugs. The resulting fuzzing campaign will be either useless to trigger
bugs in the target program or will consume a huge amount of memory
and abort.

To avoid this pitfall, our instances of Arbitrary are carefully crafted
to keep the size generated value under control using the resize function
provided by QuickCheck. Figures 2a, 2b and 2c show how the average
size of bytes behaves when the maximum QuickCheck size is increased.
The size of the resulting files grows linearly according to the maximum
size allowed to generate by the QuickCheck framework.

It is also important to take a deeper look in the sizes of the generated
files to understand how they are distributed, considering that a bias
toward the generation of small files is useful in the context of the bug
finding task. In fact, the benefit is twofold since (1) it keeps the amount
of time spent in program executions low and (2) it prefers to generate
small test cases. The resulting files triggering bugs or vulnerabilities tend
to be quite small and therefore are easier to understand for developers
looking to patch the faulty code.

In our experiments, we analyzed the size of the files of generated by
QuickFuzz bucketing them in Figures 3a, 3b and 3c. In such figures, we
can observe a bias for the generation of small input files.

6.2 Generation Effectiveness

Ideally, a fuzzer should generate or mutate inputs to produce a large
number of distinctive executions to exercise different lines of code. Hope-
fully, this process should trigger conditions to discover unexpected be-
haviors in programs.
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Figure 2: Average size in bytes of the generated files per file format
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In order to explore the effectiveness of the generation of fuzzed files
in QuickFuzz, we evaluate how many different executions we can obtain
in the parsing and processing of the generated files. For the purposes of
our experiments, we use the coverage measure know as path employed
by American Fuzzy Lop [22], a well-known fuzzer, because:

– It was designed to be useful in the fuzzing campaigns: finding more
paths is highly correlated with the discovery of more bugs [5].

– It was built using a modular approach: we can easily re-use the cor-
responding command line program to only extract paths and count
them.

– It has a very fast instrumentation: it allows to extract paths at a nearly
native speed.

Note that the AFL coverage metric might map different executions to
the same path.

In our experiments, we use QuickFuzz to generate and fuzz Png,
Jpeg and Xml files. Then, we run each fuzzed file as input to widely
deployed open source libraries to parse and process them: we compiled
instrumented libraries to parse Png files using libpng 1.2.50, Xml files
using libxml 2.9.1, and Jpeg files using libjpeg-turbo 1.3.0. Figures 4a, 4b
and 4c show how many paths can be extracted from each instrumented
implementation either using low-level mutators (zzuf and radamsa) or
directly executing the generated file.

We also included two baseline measures to compare how the file
structure created by our tool improves the path discovery. The first one
generating files of random bytes and the second one using the corre-
sponding magic numbers followed by a random bytes.

In the case of random generation, the image parsers libjpeg-turbo and
libpng will try to find a valid image since they work with arbitrary binary
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Figure 4: Average of paths discovered per file formats given the number
of generated files. In this plots, circles (©) represent execution of unal-
tered files, while triangles (4) are executions using files mutated by zzuf
and squares (�) are executions using files mutated by radamsa. Pluses
(+) and crosses (×) represent generation of random files with and with-
out magic numbers respectively.

data. The libxml 2.9.1 rejects the random file very early in the parsing
process even if it starts like a valid Xml file.

QuickFuzz discovers consistently more paths that these two baselines
using random file generation.

Also, as expected, if the user generates more files using QuickFuzz, it
is more likely to discover more paths. Additionally, the number of discov-
ered paths will grow very slowly after a few thousands files generated.
This is understandable, since QuickFuzz works as blind fuzzer: it does
not receive any feedback on the executions.

In some file formats the effect of low-level fuzzing becomes relevant.
For instance, in the case of parsing fuzzed Xml files with libxml2, using
radamsa as a low level fuzzers noticeable improves the number of dis-
covered paths, compared to the executions of unaltered files.

Interestingly enough, mutating the files using zzuf produces quite
the opposite effect: the number of paths is significantly reduced when
this fuzzer is used. This behavior might be caused by the bit flipping of
this fuzzer, causing the files to become too corrupted to be read, rejecting
the files at the early stages of parsing.

6.3 Generation, Mutation and Execution Overhead

A good performance is critical in any fuzzer: we want to spend as little
time as possible in the generation and mutation. For the overhead eval-
uation of QuickFuzz in the different stages of the fuzzing process, we
measured the time required for high-level fuzzing with and without ex-
ecution (noted as gen+exec and gen respectively) as well as high and
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low-level fuzzing using zzuf and radamsa (noted as gen+exec+zzuf
and gen+exec+rad respectively).

To strictly quantify the overhead in execution, we used /bin/echo
which does not read any file. Therefore, it should always take the same
amount of time to execute.

Figure 5: Overhead of QuickFuzz
performing the fuzzing process.

Figure 5 shows a compari-
son of the time that QuickFuzz
took to perform each step of the
fuzzing process for three different
file types. Our experiments sug-
gest that the performance of the
code generated by MegaDeTH is
not limiting the other components
of the tool. Additionally, as ex-
pected, there is a noticeable over-
head in the execution. It is possi-
ble that most of the extra time exe-
cuting is used for calling fork and
exec primitives: this why is one
the reasons some fuzzers imple-
ment a fork server [22].

We expected that the overhead
introduced by the use of a fuzzer
to be consistent regardless of the
data to mutate. For instance, in
the case of zzuf, a fuzzer which only XORs bits from the input files with-
out reading them, it should be a constant overhead. However, the case
of Radamsa is different. It is a fuzzer which looks at the structure of the
data and performs some mutations according to it. In fact, it was spe-
cially designed to detect and fuzz markup languages: this can explain
the higher overhead in the mutation of Svg files using it.

6.4 Real-World Vulnerabilities Detection

Thanks to Haskell implementations of file-format-handling libraries found
on Hackage, QuickFuzz currently generates and mutates a large set of
different file types out of the box. Table 6a shows a list of supported file
types to generate and corrupt using our tool.

We tested QuickFuzz using complex real-world applications like
browsers, image processing utilities and file archivers among others. All
the security vulnerabilities presented in this work were previously un-
known (also known as zero-days). The results are summarized in Table
6b. An exhaustive list is available at the official website of QuickFuzz, in-
cluding frequent updates on the latest bugs discovered using the tool.

Additionally, we reported some ordinary bugs. For instance, the use
of variable coherence enforcement allowed us to find a bug that stalls the

https://bugs.python.org/issue27695
https://bugs.python.org/issue27695
https://bugs.python.org/issue27695
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compilation in Python, and more than a twenty memory issues in GNU
Bash and Busybox.

Code
Javascript
Python
HTML
Lua
Json
Xml
Css
Sh
GLSL
Dot
Regex

Image
Bmp
Gif
Png
Jpeg
Svg
Eps
Ico
Tga
Tiff
Pnm

Document
Pdf
Ps
Docx
Odt
Rtf
ICal

Media
Ogg
ID3
Midi
TTF
Wav

Archive
Zip
GZip
Tar
CPIO

PKI
asn.1
x509
CRT

(a) File-types supported for fuzzing

Program File-Type Reference Program File-Type Reference

Firefox Gif CVE-2016-1933 Cairo Svg CVE-2016-9082
Firefox Zip CVE-2015-7194 libgd Tga CVE-2016-6132
Firefox Svg 1297206 libgd Tga CVE-2016-6214
Firefox Gif 1210745 GraphicsMagick Svg CVE-2016-2317
mujs Js CVE-2016-9109 GraphicsMagick Svg CVE-2016-2318

Webkit Js CVE-2016-9642 Mini-XML Xml CVE-2016-4570
Webkit Regex CVE-2016-9643 libical Ical CVE-2016-9584

gif2webp Gif CVE-2016-9085 Mini-Xml Xml CVE-2016-4571
VLC Wav CVE-2016-3941 GDK-pixbuf Bmp CVE-2015-7552

Jasper Jpeg CVE-2015-5203 GDK-pixbuf Gif CVE-2015-7674
libXML Xml CVE-2016-4483 GDK-pixbuf Tga CVE-2015-7673
libXML Xml CVE-2016-3627 GDK-pixbuf Ico CVE-2016-6352

Jq Json CVE-2016-4074 mplayer Wav CVE-2016-5115
Jasson Json CVE-2016-4425 mplayer Gif CVE-2016-4352
cpio CPIO CVE-2016-2037 libTIFF Tiff CVE-2015-7313

(b) Some of the security issues found by QuickFuzz

Figure 6: Implementation and results

6.5 Comparison with Other Fuzzers

To make a fair comparison between fuzzers is a challenge. First, it only
makes sense to compare between fuzzers using similar techniques. Sec-
ond, in the case of generative ones, the model to produce files in all the
compared fuzzers should be similar or somehow equivalent; otherwise,
generating a complex input will most likely take varying amounts of

https://bugs.python.org/issue27695
https://bugs.python.org/issue27695
https://bugs.python.org/issue27695
https://lists.gnu.org/archive/html/bug-bash/2016-09/msg00003.html
https://lists.gnu.org/archive/html/bug-bash/2016-09/msg00003.html
https://bugs.busybox.net/buglist.cgi?bug_status=__all__&content=QuickFuzz&no_redirect=1&order=Importance&query_format=specific
https://bugzilla.mozilla.org/show_bug.cgi?id=1297206
https://bugzilla.mozilla.org/show_bug.cgi?id=1210745
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time and could result in some fuzzers being unfairly flagged as slow and
inefficient.

Moreover, some fuzzers like Peach are not useful to start discovering
bugs immediately after installing them since they include almost no
models to start the input generation process. Usually, if you want to
have a wide support of file-types or protocols to fuzz, you need to pay
to access them [12] or hire an specialist to create them. In other cases like
Sulley, fuzzers are developed to be more like a framework in which you
can define models, mutate and monitor the process. As a result, no file-
type specifications are provided out of the box.

Recently, Mozilla released Dharma, a fuzzer to generate very specific
files like Canvas2D and Node.js buffer scripts. It was designed by the
Mozilla Security team to stress the API of Firefox. Nevertheless, this tool
is good candidate to compare with QuickFuzz since it includes a gram-
mar to generate Svg files and our tool currently supports to generate this
kind of files through the types and functions of svg-tree package [37].

A comparison of the bugs and vulnerabilities discovered by both
fuzzers is not possible: we could not find any public information regard-
ing how many issues were reported thanks to Dharma. However, we
suspect that the Mozilla Security already used it extensively to improve
the quality of the Firefox parsers and the render engine.

Fortunately, it is certainly possible to compare the throughput of both
fuzzers: QuickFuzz has approximately 1.9 times more throughput gener-
ating files Svg files than Dharma. While this measure is far from perfect,
it gives a hint on how optimized is the generation of files using our tool.

6.6 Limitations

The use of third-party modules from Hackage carries some limitations.
Some of the modules we used to serialize complex file types do not imple-
ment all the features. For instance, the Bmp support in Juicy.Pixels
cannot handle or serialize compressed files. Therefore this feature will
not be effectively tested in the Bmp parsers. In this sense, types are used
as incomplete specifications of file-formats.

We performed some experiments to compare how good is the input
generation variety of QuickFuzz against a mature and complete test suite
of Png files. We used a test suite created by Willem van Schaik [38] that
contains a variety of small Png files. It covers different color types (gray-
scale, rgb, palette, etc.), bit-depths, interlacing and transparency configu-
rations allowed by the Png standard. Also, in order to test robustness in
the Png parsers, this test suite includes valid images using odd sizes (for
instance, very small and very large) and corrupted images. We counted
the amount of distinctive paths after processing all the Png files in the test
suite using pngtest from libpng [32]. We performed the same experi-
ment, but using QuickFuzz to generate and mutate Png files 10,000 times.
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The execution of test suite uncovers 6268 different paths, while the
generation and fuzzing of 10,000 Png files using QuickFuzz, only discov-
ers 746 different paths. Therefore, our tool can only trigger ∼11% of the
paths we discover parsing a complex image format like Png.

There are several explanations for such low coverage compared with
a complete test suite like pngtest. On one hand, the generation of Png
files in QuickFuzz is limited by supported features in third party libraries
like Juicy.Pixels [36]. For instance, this library lacks of the code to encode
interleaved Png images. On the other hand, good test suites like this one
are very expensive to create since they require a very deep knowledge of
the file format to test. The use of automatic tools for test suites synthesis
still challenging.

Despite the automatic generation of a high quality corpus of a very
complex file format like Png is still unfeasible, it is a long term goal of
our research.

Another limitation related with the encode function is caused by the
use of partial functions. Then the encoding could fail to execute correctly
in large number of randomly generated inputs. For instance, if the encode
function requires some hard constrain to be present in the generated
value such as some particular magic number to be guessed:

encodeHeader :: Int → ByteString
encodeHeader version
| version ≡ 87 = "GIF87"
| version ≡ 89 = "GIF89"
| otherwise = error "invalid version"

In this function, the encoding of gif format files only defines two
version numbers 87 and 89: therefore, the approach to value generation
defined in 4.1 is not going to be effective, since the probability of selecting
a valid version number is 1 in 2, 147, 483, 647. Currently, this kind of
issues are avoided manually selecting suitable libraries from Hackage to
integrate in QuickFuzz.

Finally, the encode function used in the serialization includes its own
bugs. Unsurprisingly some of them can be triggered by the generation of
QuickCheck values. We reported some of these issues as bugs [14] to the
upstream developers of the libraries we use in QuickFuzz. In any case,
we have a simple workaround when no fix is available: if the encode
function throws an unhandled exception, we ignore it and continue the
fuzzing process using the next generated value to serialize.

7 Related Work
Automatic algebraic data type test generation Claessen et al. [8] propose a
technique for automatically deriving test data generators from a predi-
cate expressed as a Boolean function. The derived generators are both
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efficient and guaranteed to produce a uniform distribution over values
of a given size.

While MegaDeTH currently produces generators with ad-hoc distri-
butions, it would be feasible to integrate this technique to the existing
machinery to achieve more control over the test case generation process.

Testing compilers generating random programs As we stated in 4.3, we ob-
served that Arbitrary instances are not always effective in the genera-
tion of source code, since it requires to carefully define variable names
and functions before trying to use them. Therefore, the fuzzed generated
source code will be very likely rejected in the first steps of the parsing of
interpreters or compilers. This is a well-known issue that has been stud-
ied extensively by Pałka et al. [30] in the context of testing a compiler.

The approach in that paper always generate valid lambda calculus
terms, representing programs in Haskell. Then, they compiled the result-
ing terms using the Glasgow Haskell compiler in different optimization
levels, to try to discover incorrectly compiled code.

In this sense, our tool also manages to generate source code and can
be used to test compilers. Nevertheless they are designed with different
goals in mind; on one hand, the authors of [30] generate a program of a
strongly typed language. They define suitable rules for the generation,
and how to backtrack in case of failing to use them.

On the other hand, QuickFuzz generates only source code from dy-
namically typed programs, without using any backtracking in order to
keep the generation very fast, but not always correct.

8 Conclusions and Future Work

We have presented QuickFuzz, a tool for automatically generating in-
puts and fuzzing programs that work on common file formats. Unlike
other fuzzers, QuickFuzz does not require the user to provide a set of
valid inputs to mutate, not to place the burden of writing specifications
for file formats on the programmer. Our tool combines both genera-
tional and mutational fuzzing techniques by bringing together Haskell’s
QuickCheck library and off-the-shelf robust mutational fuzzers. In ad-
dition, we introduce MegaDeTH, a library that can be used to gener-
ate instances of the Arbitrary type classes. MegaDeTH works in tandem
with QuickFuzz, allowing us to crowd-source the specifications for well-
known file formats that are already present in Hackage libraries. We
tried QuickFuzz in the wild and found that the approach is effective in
discovering interesting bugs in real-world implementations. Moreover,
to the best of our knowledge QuickFuzz is the only fuzzing tool that pro-
vides out-of-the-box generation and mutation of almost forty complex
common file formats, without requiring users to write models or config-
uration files.
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As future work, we intend to introduce mutations at different levels
of the QuickFuzz pipeline rather than just at the level of the serialized
ByteString . In particular, we aim to explore code analysis of the serializa-
tions functions to detect and selectively break invariants and to perform
mutations on such functions to corrupt files.

Another interesting feature to add to our tool is the input simplifi-
cation procedure [40]. This procedure can be used just after a crash is
detected and is very important for the developers looking to fix the is-
sue, since the minimized test case should only trigger the code that is
required to reproduce the unexpected behavior.

Our goal is to implement a general way to automatically derive spe-
cialized input simplification strategies for algebraic data types encoding
different file formats. Moreover, by using the actions-based approach we
would like to work in a higher level of abstraction, reducing a test case
to the minimal sequence of actions needed to trigger an error on target
programs.

Additionally, we observed that in general Haskell programmers im-
plement their libraries in the more general way they can abusing of the
expressive power of Haskell data-type ecosystem. Therefore the action-
based approach is a good starting point to derive a Generalized Alge-
braic Data-types that can provides us with more information based in
the functions found in the library, and we might capture effectful behav-
iors with this idea.

Finally, we would like to extend our approach to the generation and
fuzzing of network protocols, since most of the vulnerabilities there can
be remotely exploitable.
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ABSTRACT

In QuickCheck (or, more generally, random testing), it is challenging to
control random data generators’ distributions—specially when it comes
to user-defined algebraic data types (ADT). In this paper, we adapt results
from an area of mathematics known as branching processes, and show how
they help to analytically predict (at compile-time) the expected number
of generated constructors, even in the presence of mutually recursive or
composite ADTs. Using our probabilistic formulas, we design heuristics
capable of automatically adjusting probabilities in order to synthesize
generators which distributions are aligned with users’ demands. We pro-
vide a Haskell implementation of our mechanism in a tool called DRA-
GEN and perform case studies with real-world applications. When gen-
erating random values, our synthesized QuickCheck generators show im-
provements in code coverage when compared with those automatically
derived by state-of-the-art tools.
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1 Introduction

Random property-based testing is an increasingly popular approach to
finding bugs [3, 17, 18]. In the Haskell community, QuickCheck [10] is the
dominant tool of this sort. QuickCheck requires developers to specify test-
ing properties describing the expected software behavior. Then, it gener-
ates a large number of random test cases and reports those violating the
testing properties. QuickCheck generates random data by employing ran-
dom test data generators or QuickCheck generators for short. The genera-
tion of test cases is guided by the types involved in the testing properties.
It defines default generators for many built-in types like booleans, inte-
gers, and lists. However, when it comes to user-defined ADTs, develop-
ers are usually required to specify the generation process. The difficulty
is, however, that it might become intricate to define generators so that
they result in a suitable distribution or enforce data invariants.

The state-of-the-art tools to derive generators for user-defined ADTs
can be classified based on the automation level as well as the sort of in-
variants enforced at the data generation phase. QuickCheck and Small-
Check [27] (a tool for writing generators that synthesize small test cases)
use type-driven generators written by developers. As a result, generated
random values are well-typed and preserve the structure described by
the ADT. Rather than manually writing generators, libraries derive [24]
and MegaDeTH [14, 15] automatically synthesize generators for a given
user-defined ADT. The library derive provides no guarantees that the gen-
eration process terminates, while MegaDeTH pays almost no attention to
the distribution of values. In contrast, Feat [12] provides a mechanism to
uniformly sample values from a given ADT. It enumerates all the pos-
sible values of a given ADT so that sampling uniformly from ADTs be-
comes sampling uniformly from the set of natural numbers. Feat’s au-
thors subsequently extend their approach to uniformly generate values
constrained by user-defined predicates [9]. Lastly, Luck is a domain spe-
cific language for manually writing QuickCheck properties in tandem
with generators so that it becomes possible to finely control the distribu-
tion of generated values [19].

In this work, we consider the scenario where developers are not fully
aware of the properties and invariants that input data must fulfill. This
constitutes a valid assumption for penetration testing [2], where testers
often apply fuzzers in an attempt to make programs crash—an anomaly
which might lead to a vulnerability. We believe that, in contrast, if users
can recognize specific properties of their systems then it is preferable
to spend time writing specialized generators for that purpose (e.g., by
using Luck) instead of considering automatically derived ones.

Our realization is that branching processes [29], a relatively simple
stochastic model conceived to study the evolution of populations, can
be applied to predict the generation distribution of ADTs’ constructors
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in a simple and automatable manner. To the best of our knowledge, this
stochastic model has not yet been applied to this field, and we believe it
may be a promising foundation to develop future extensions. The contri-
butions of this paper can be outlined as follows:

– We provide a mathematical foundation which helps to analytically
characterize the distribution of constructors in derived QuickCheck
generators for ADTs.

– We show how to use type reification to simplify our prediction pro-
cess and extend our model to mutually recursive and composite
types.

– We design (compile-time) heuristics that automatically search for
probability parameters so that distributions of constructors can be
adjusted to what developers might want.

– We provide an implementation of our ideas in the form of a Haskell
library3 called DRAGEN (the Danish word for dragon, here standing
for Derivation of RAndom GENerators).

– We evaluate our tool by generating inputs for real-world programs,
where it manages to obtain significantly more code coverage than
those random inputs generated by MegaDeTH’s generators.

Overall, our work addresses a timely problem with a neat mathemat-
ical insight that is backed by a complete implementation and experience
on third-party examples.

2 Background
In this section, we briefly illustrate how QuickCheck random generators
work. We consider the following implementation of binary trees:

data Tree = LeafA | LeafB | LeafC | Node Tree Tree

In order to help developers write generators, QuickCheck defines the
Arbitrary type-class with the overloaded symbol arbitrary ::Gen a , which
denotes a monadic generator for values of type a . Then, to generate ran-
dom trees, we need to provide an instance of the Arbitrary type-class for

instance Arbitrary Tree where
arbitrary = oneof

[pure LeafA, pure LeafB , pure LeafC
,Node 〈$〉 arbitrary 〈?〉 arbitrary ]

Figure 1: Random generator for Tree .

3Available at https://github.com/OctopiChalmers/dragen

https://github.com/OctopiChalmers/dragen
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the type Tree . Figure 1 shows a possible implementation. At the top level,
this generator simply uses QuickCheck’s primitive oneof :: [Gen a ] →
Gen a to pick a generator from a list of generators with uniform proba-
bility. This list consists of a random generator for each possible choice of
data constructor of Tree . We use applicative style [22] to describe each one
of them idiomatically. So, pure LeafA is a generator that always generates
LeafAs, while Node 〈$〉 arbitrary 〈?〉 arbitrary is a generator that always
generates Node constructors, “filling” its arguments by calling arbitrary
recursively on each of them.

Although it might seem easy, writing random generators becomes
cumbersome very quickly. Particularly, if we want to write a random
generator for a user-defined ADT T , it is also necessary to provide ran-
dom generators for every user-defined ADT inside of T as well! What
remains of this section is focused on explaining the state-of-the-art tech-
niques used to automatically derive generators for user-defined ADTs via
type-driven approaches.

2.1 Library derive

The simplest way to automatically derive a generator for a given ADT is
the one implemented by the Haskell library derive [24]. This library uses
Template Haskell [28] to automatically synthesize a generator for the
data type Tree semantically equivalent to the one presented in Figure 1.

While the library derive is a big improvement for the testing process,
its implementation has a serious shortcoming when dealing with recur-
sively defined data types: in many cases, there is a non-zero probability
of generating a recursive type constructor every time a recursive type
constructor gets generated, which can lead to infinite generation loops.
A detailed example of this phenomenon is given in Appendix 2.1. In this
work, we only focus on derivation tools which accomplish terminating
behavior, since we consider this an essential component of well-behaved
generators.

2.2 MegaDeTH

The second approach we will discuss is the one taken by MegaDeTH, a
meta-programming tool used intensively by QuickFuzz [14, 15]. In first
place, MegaDeTH derives random generators for ADTs as well as all
of its nested types—a useful feature not supported by derive. Secondly,
MegaDeTH avoids potentially infinite generation loops by setting an up-
per bound to the random generation recursive depth.

Figure 2 shows a simplified (but semantically equivalent) version of
the random generator for Tree derived by MegaDeTH. This generator
uses QuickCheck’s function sized :: (Int → Gen a)→ Gen a to build a ran-
dom generator based on a function (of type Int → Gen a) that limits the
possible recursive calls performed when creating random values. The in-
teger passed to sized ’s argument is called the generation size. When the
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instance Arbitrary Tree where
arbitrary = sized gen

where
gen 0 = oneof

[pure LeafA, pure LeafB , pure LeafC ]
gen n = oneof

[pure LeafA, pure LeafB , pure LeafC
,Node 〈$〉 gen (div n 2 ) 〈?〉 gen (div n 2 )]

Figure 2: MegaDeTH generator for Tree .

generation size is zero (see definition gen 0 ), the generator only chooses
between the Tree’s terminal constructors—thus ending the generation
process. If the generation size is strictly positive, it is free to randomly
generate any Tree constructor (see definition gen n). When it chooses
to generate a recursive constructor, it reduces the generation size for its
subsequent recursive calls by a factor that depends on the number of re-
cursive arguments this constructor has (div n 2 ). In this way, MegaDeTH
ensures that all generated values are finite.

Although MegaDeTH generators always terminate, they have a major
practical drawback: in our example, the use of oneof to uniformly decide
the next constructor to be generated produces a generator that generates
leaves approximately three quarters of the time (note this also applies to
the generator obtained with derive from Figure 1). This entails a distri-
bution of constructors heavily concentrated on leaves, with a very small
number of complex values with nested nodes, regardless how large the
chosen generation size is—see Figure 3 (left).

2.3 Feat

The last approach we discuss is Feat [12]. This tool determines the distri-
bution of generated values in a completely different way: it uses uniform
generation based on an exhaustive enumeration of all the possible values of the
ADTs being considered. Feat automatically establishes a bijection between
all the possible values of a given type T , and a finite prefix of the natural
numbers. Then, it guarantees a uniform generation over the complete space
of values of a given data type T up to a certain size.4 However, the distribu-
tion of size, given by the number of constructors in the generated values,
is highly dependent on the structure of the data type being considered.

Figure 3 (right) shows the overall distribution shape of a QuickCheck
generator derived using Feat for Tree using a generation size of 400, i.e.,

4We avoid including any source code generated by Feat, since it works by
synthesizing Enumerable type-class instances instead of Arbitrary ones. Such
instances give no insight into how the derived random generators work.
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Figure 3: Size distribution of 100000 randomly generated Tree values us-
ing MegaDeTH (N) with generation size 10, and Feat (�) with generation
size 400.

generating values of up to 400 constructors.5 Notice that all the generated
values are close to the maximum size! This phenomenon follows from the
exponential growth in the number of possible Trees of n constructors as
we increase n . In other words, the space of Trees up to 400 constructors is
composed to a large extent of values with around 400 constructors, and
(proportionally) very few with a smaller number of constructors. Hence,
a generation process based on uniform generation of a natural number
(which thus ignores the structure of the type being generated) is biased
very strongly towards values made up of a large number of constructors.
In our tests, no Tree with less than 390 constructors was ever generated.
In practice, this problem can be partially solved by using a variety of
generation sizes in order to get more diversity in the generated values.
However, to decide which generation sizes are the best choices is not
a trivial task either. As consequence, in this work we consider only the
case of fixed-size random generation.

As we have shown, by using both MegaDeTH and Feat, the user is tied
to the fixed generation distribution that each tool produces, which tends
to be highly dependent on the particular data type under consideration
on each case. Instead, this work aims to provide a theoretical framework
able to predict and later tune the distributions of automatically derived genera-
tors, giving the user a more flexible testing environment, while keeping
it as automated as possible.

5 We choose to use this generation size here since it helps us to compare
MegaDeTH and Feat with the results of our tool in Section 8.
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3 Simple-Type Branching Processes
Galton-Watson Branching processes (or branching processes for short)
are a particular case of Markov processes that model the growth and ex-
tinction of populations. Originally conceived to study the extinction of
family names in the Victorian era, this formalism has been successfully
applied to a wide range of research areas in biology and physics—see
the textbook by Haccou et al. [16] for an excellent introduction. In this
section, we show how to use this theory to model QuickCheck’s distribu-
tion of constructors.

We start by analyzing the generation process for the Node construc-
tors in the data type Tree as described by the generators in Figure 1 and
2. From the code, we can observe that the stochastic process they encode
satisfies the following assumptions (which coincide with the assump-
tions of Galton-Watson branching processes): i) With a certain probabil-
ity, it starts with some initial Node constructor. ii) At any step, the prob-
ability of generating a Node is not affected by the Nodes generated be-
fore or after. iii) The probability of generating a Node is independent of
where in the tree that constructor is about to be placed.

The original Galton-Watson process is a simple stochastic process
that counts the population sizes at different points in time called gener-
ations. For our purposes, populations consist of Node constructors, and
generations are obtained by selecting tree levels.

Node

Node

NodeLeafB

Node

NodeLeafA

G0

G1

G2

Figure 4: Generation of Node
constructors.

Figure 4 illustrates a possible gen-
erated value. It starts by generating
a Node constructor at generation (i.e.,
depth) zero (G0), then another two
Node constructors as left and right
subtrees in generation one (G1), etc.
(Dotted edges denote further con-
structors which are not drawn, as
they are not essential for the point be-
ing made.) This process repeats until
the population of Node constructors
becomes extinct or stable, or alterna-
tively grows forever.

The mathematics behind the Galton-Watson process allows us to pre-
dict the expected number of offspring at the nth-generation, i.e., the num-
ber of Node constructors at depth n in the generated tree. Formally, we
start by introducing the random variableR to denote the number of Node
constructors in the next generation generated by a Node constructor in
this generation—the R comes from “reproduction” and the reader can
think it as a Node constructor reproducing Node constructors. To be a bit
more general, let us consider the Tree random generator automatically
generated using derive (Figure 1), but where the probability of choosing
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between any constructor is no longer uniform. Instead, we have a pC
probability of choosing the constructor C .

These probabilities are external parameters of the prediction mecha-
nism, and Section 7 explains how they can later be instantiated with ac-
tual values found by optimization, enabling the user to tune the gener-
ated distribution.

We note pLeaf as the probability of generating a leaf of any kind, i.e.,
pLeaf = pLeafA+pLeafB+pLeafC . In this setting, and assuming a parent
constructor Node, the probabilities of generating R numbers of Node
offspring in the next generation (i.e., in the recursive calls of arbitrary)
are as follows:

P (R = 0) = pLeaf · pLeaf
P (R = 1) = pNode · pLeaf + pLeaf · pNode = 2 · pNode · pLeaf
P (R = 2) = pNode · pNode

One manner to understand the equations above is by considering
what QuickCheck does when generating the subtrees of a given node.
For instance, the cases when generating exactly one Node as descendant
(P (R = 1)) occurs in two situations: when the left subtree is a Node and
the right one is a Leaf ; and vice-versa. The probability for those events to
occur is pNode∗pLeaf and pLeaf ∗pNode, respectively. Then, the probability
of having exactly one Node as a descendant is given by the sum of the
probability of both events—the other cases follow a similar reasoning.

Now that we have determined the distribution of R, we proceed to
introduce the random variables Gn to denote the population of Node
constructors in the nth generation. We write ξni for the random variable
which captures the number of (offspring) Node constructors at the nth
generation produced by the ith Node constructor at the (n-1)th genera-
tion. It is easy to see that it must be the case that:

Gn = ξn1 + ξn2 + · · ·+ ξnGn−1

To deduceE[Gn], i.e. the expected number of Nodes in the nth genera-
tion, we apply the (standard) Law of Total ExpectationE[X] = E[E[X|Y ]]6

with X = Gn and Y = Gn−1 to obtain:

E[Gn] = E[E[Gn|Gn−1]]. (1)

6 E[X|Y ] is a function on the random variable Y , i.e., E[X|Y ]y = E[X|Y =
y] and therefore it is a random variable itself. In this light, the law says that if
we observe the expectations of X given the different ys, and then we do the
expectation of all those values, then we have the expectation of X .
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By expanding Gn, we deduce that:

E[Gn|Gn−1] = E[ξn1 + ξn2 +· · ·+ ξnGn−1
|Gn−1]

= E[ξn1 |Gn−1] + E[ξn2 |Gn−1] +· · ·+ E[ξnGn−1
|Gn−1]

Since ξn1 , ξn2 , ..., and ξnGn−1
are all governed by the distribution captured

by the random variable R (recall the assumptions at the beginning of the
section), we have that:

E[Gn|Gn−1] = E[R|Gn−1] + E[R|Gn−1] + · · ·+ E[R|Gn−1]

Since R is independent of the generation where Node constructors decide
to generate other Node constructors, we have that

E[Gn|Gn−1] = E[R] + E[R] + · · ·+ E[R]︸ ︷︷ ︸
Gn−1 times

= E[R]·Gn−1 (2)

From now on, we introduce m to denote the mean of R, i.e., the mean
of reproduction. Then, by rewriting m = E[R], we obtain:

E[Gn]
(1)
= E[E[Gn|Gn−1]]

(2)
= E[m·Gn−1]

m is constant
= E[Gn−1]·m

By unfolding this recursive equation many times, we obtain:

E[Gn] = E[G0]·mn (3)

As the equation indicates, the expected number of Node constructors
at the nth generation is affected by the mean of reproduction. Although
we obtained this intuitive result using a formalism that may look overly
complex, it is useful to understand the methodology used here. In the
next section, we will derive the main result of this work following the
same reasoning line under a more general scenario.

We can now also predict the total expected number of individuals
up to the nth generation. For that purpose, we introduce the random
variable Pn to denote the population of Node constructors up to the nth
generation. It is then easy to see that Pn =

∑n
i=0Gi and consequently:

E[Pn]=

n∑
i=0

E[Gi]
(3)
=

n∑
i=0

E[G0] ·mi = E[G0]·
(
1−mn+1

1−m

)
(4)

where the last equality holds by the geometric series definition. This
is the general formula provided by the Galton-Watson process. In this
case, the mean of reproduction for Node is given by:

m = E[R] =

2∑
k=0

k · P (R = k) = 2 · pNode (5)
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By (4) and (5), the expected number of Node constructors up to gen-
eration n is given by the following formula:

E[Pn]=E[G0]·
(
1−mn+1

1−m

)
=pNode ·

(
1−(2 · pNode)

n+1

1−2·pNode

)
If we apply the previous formula to predict the distribution of con-

structors induced by MegaDeTH in Figure 2, where pLeafA = pLeafB =
pLeafC = pNode = 0.25, we obtain an expected number of Node construc-
tors up to level 10 of 0.4997, which denotes a distribution highly biased
towards small values, since we can only produce further subterms by
producing Nodes. However, if we set pLeafA = pLeafB = pLeafC = 0.1
and pNode = 0.7, we can predict that, as expected, our general random
generator will generate much bigger trees, containing an average num-
ber of 69.1173 Nodes up to level 10! Unfortunately, we cannot apply this
reasoning to predict the distribution of constructors for derived genera-
tors for ADTs with more than one non-terminal constructor. For instance,
let us consider the following data type definition:

data Tree ′ = Leaf | NodeA Tree ′ Tree ′ | NodeB Tree ′

In this case, we need to separately consider that a NodeA can gener-
ate not only NodeA but also NodeB offspring (similarly with NodeB ). A
stronger mathematical formalism is needed. The next section explains
how to predict the generation of this kind of data types by using an exten-
sion of Galton-Waston processes known as multi-type branching processes.

4 Multi-Type Branching Processes
In this section, we present the basis for our main contribution: the appli-
cation of multi-type branching processes to predict the distribution of construc-
tors. We will illustrate the technique by considering the Tree ′ ADT that
we concluded with in the previous section.

instance Arbitrary Tree ′ where
arbitrary = sized gen

where
gen 0 = pure Leaf
gen n = chooseWith

[ (pLeaf , pure Leaf )
, (pNodeA,NodeA 〈$〉 gen (n−1 ) 〈?〉 gen (n−1 ))
, (pNodeB ,NodeB 〈$〉 gen (n−1 ))]

Figure 5: DRAGEN generator for Tree ′
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Before we dive into technicalities, Figure 5 shows the automatically
derived generator for Tree ′ that our tool produces. Our generators de-
pend on the (possibly) different probabilities that constructors have to be
generated—variables pLeaf , pNodeA, and pNodeB . These probabilities are
used by the function chooseWith :: [(Double,Gen a)] → Gen a , which
picks a random generator of type a with an explicitly given probability
from a list. This function can be easily expressed by using QuickCheck’s
primitive operations and therefore we omit its implementation. Addi-
tionally note that, like MegaDeTH, our generators use sized to limit the
number of recursive calls to ensure termination. We note that the the-
ory behind branching processes is able to predict the termination behav-
ior of our generators and we could have used this ability to ensure their
termination without the need of a depth limiting mechanism like sized .
However, using sized provides more control over the obtained generator
distributions.

To predict the distribution of constructors provided by DRAGEN gen-
erators, we introduce a generalization of the previous Galton-Watson
branching process called multi-type Galton-Watson branching process.
This generalization allows us to consider several kinds of individuals, i.e.,
constructors in our setting, to procreate (generate) different kinds of off-
spring (constructors). Additionally, this approach allows us to consider
not just one constructor, as we did in the previous section, but rather to
consider all of them at the same time.

Before we present the mathematical foundations, which follow a sim-
ilar line of reasoning as that in Section 3, Figure 6 illustrates a possible
generated value of type Tree ′.

NodeA

NodeA

LeafNodeB

NodeB

NodeA

Figure 6: A generated value
of type Tree ′.

In the generation process, it is as-
sumed that the kind (i.e., the constructor)
of the parent might affect the probabilities of
reproducing (generating) offspring of a cer-
tain kind. Observe that this is the case
for a wide range of derived ADT gener-
ators, e.g., choosing a terminal construc-
tor (e.g., Leaf ) affects the probabilities
of generating non-terminal ones (by set-
ting them to zero). The population at
the nth generation is then characterized
as a vector of random variables Gn =
(G1

n, G
2
n, · · · , Gdn), where d is the number

of different kinds of constructors. Each random variable Gin captures the
number of occurrences of the ith-constructor of the ADT at the nth gener-
ation. Essentially, Gn “groups” the population at level n by the construc-
tors of the ADT. By estimating the expected shape of the vector Gn, it is
possible to obtain the expected number of constructors at the nth gener-
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ation. Specifically, we have that E[Gn] = (E[G1
n], E[G2

n], · · · , E[Gdn]). To
deduce E[Gn], we focus on deducing each component of the vector.

As explained above, the reproduction behavior is determined by the
kind of the individual. In this light, we introduce random variable Rij
to denote a parent ith constructor reproducing a jth constructor. As we
did before, we apply the equation E[X] = E[E[X|Y ]] with X = Gjn and
Y = Gn−1 to obtain E[Gjn] = E[E[Gjn|Gn−1]]. To calculate the expected
number of jth constructors at the level n produced by the constructors
present at level (n − 1), i.e., E[Gjn|G(n−1)], it is enough to count the ex-
pected number of children of kind j produced by the different parents
of kind i, i.e., E[Rij ], times the amount of parents of kind i found in the
level (n− 1), i.e., Gi(n−1). This result is expressed by the following equa-
tion marked as (?), and is formally verified in the Appendix 2.2.

E[Gjn|Gn−1]
(?)
=

d∑
i=1

Gi(n−1) ·E[Rij ] =

d∑
i=1

Gi(n−1) ·mij (6)

Similarly as before, we rewrite E[Rij ] as mij , which now represents a
single expectation of reproduction indexed by the kind of both the parent
and child constructor.

Mean matrix of constructors In the previous section, m was the expecta-
tion of reproduction of a single constructor. Now we have mij as the ex-
pectation of reproduction indexed by the parent and child constructor.
In this light, we define MC , the mean matrix of constructors (or mean ma-
trix for simplicity) such that each mij stores the expected number of jth
constructors generated by the ith constructor. MC is a parameter of the
Galton-Watson multi-type process and can be built at compile-time us-
ing statically known type information. We are now able to deduce E[Gjn].

E[Gjn] = E[E[Gjn|Gn−1]]
(6)
= E

[
d∑
i=1

Gi(n−1) ·mij

]

=

d∑
i=1

E[Gi(n−1) ·mij ] =

d∑
i=1

E[Gi(n−1)]·mij

Using this last equation, we can rewrite E[Gn] as follows.

E[Gn] =

(
d∑
i=1

E[G1
(n−1)]·mi1, · · · ,

d∑
i=1

E[Gd(n−1)]·mid

)
By linear algebra, we can rewrite the vector above as the matrix multipli-
cation E[Gn]

T = E[Gn−1]
T ·MC . By repeatedly unfolding this definition,

we obtain that:

E[Gn]
T = E[G0]

T · (MC)
n (7)
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This equation is a generalization of (3) when considering many construc-
tors. As we did before, we introduce a random variable Pn =

∑n
i=0Gi

to denote the population up to the nth generation. It is now possible to
obtain the expected population of all the constructors but in a clustered
manner:

E[Pn]
T = E

[
n∑
i=0

Gi

]T
=

n∑
i=0

E[Gi]
T (7)
=

n∑
i=0

E[G0]
T ·(MC)

n (8)

It is possible to write the resulting sum as the closed formula:

E[Pn]
T = E[G0]

T ·
(
I − (MC)

n+1

I −MC

)
(9)

where I represents the identity matrix of the appropriate size. Note that
equation (9) only holds when (I −MC) is non-singular, however, this is
the usual case. When (I −MC) is singular, we resort to using equation
(8) instead. Without losing generality, and for simplicity, we consider
equations (8) and (9) as interchangeable. They are the general formulas
for the Galton-Watson multi-type branching processes.

Then, to predict the distribution of our Tree ′ data type example, we
proceed to build its mean matrix MC . For instance, the mean number of
Leaf s generated by a NodeA is:

mNodeA,Leaf = 1 · pLeaf · pNodeA + 1 · pLeaf · pNodeB︸ ︷︷ ︸
One Leaf as left-subtree

+ 1 · pNodeA · pLeaf + 1 · pNodeB · pLeaf︸ ︷︷ ︸
One Leaf as right-subtree

+ 2 · pLeaf · pLeaf︸ ︷︷ ︸
Leaf as left- and right-subtree

= 2 · pLeaf (10)

The rest of MC can be similarly computed, obtaining:

MC =

0 0 0

2 · pLeaf 2 · pNodeA 2 · pNodeB
pLeaf pNodeA pNodeB




Leaf NodeA NodeB

Leaf

NodeA

NodeB

(11)
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Note that the first row, corresponding to the Leaf constructor, is filled
with zeros. This is because Leaf is a terminal constructor, i.e., it cannot
generate further subterms of any kind.7

With the mean matrix in place, we define E[G0] (the initial vector
of mean probabilities) as (pLeaf , pNodeA, pNodeB). By applying (9) with
E[G0] and MC , we can predict the expected number of generated non-
terminal NodeA constructors (and analogously NodeB ) with a size param-
eter n as follows:

E[NodeA]=
(
E[Pn−1]

T
)
.NodeA=

(
E[G0]

T ·
(
I−(MC)

n

I−MC

))
.NodeA

Function (_).C simply projects the value corresponding to construc-
tor C from the population vector. It is very important to note that the
sum only includes the population up to level (n− 1). This choice comes
from the fact that our QuickCheck generator can choose between only ter-
minal constructors at the last generation level (recall that gen 0 gener-
ates only Leaf s in Figure 5). As an example, if we assign our generation
probabilities for Tree ′ as pLeaf 7→ 0.2, pNodeA 7→ 0.5 and pNodeB 7→ 0.3,
then the formula predicts that our QuickCheck generator with a size pa-
rameter of 10 will generate on average 21.322 NodeAs and 12.813 NodeBs.
This result can easily be verified by sampling a large number of values
with a generation size of 10, and then averaging the number of gener-
ated NodeAs and NodeBs across the generated values.

In this section, we obtain a prediction of the expected number of
non-terminal constructors generated by DRAGEN generators. To predict
terminal constructors, however, requires a special treatment as discussed
in the next section.

5 Terminal Constructors
In this section we introduce the special treatment required to predict the
generated distribution of terminal constructors, i.e. constructors with no
recursive arguments.

Consider the generator in Figure 5. It generates terminal construc-
tors in two situations, i.e., in the definition of gen 0 and gen n . In other
words, the random process introduced by our generators can be consid-
ered to be composed of two independent parts when it comes to termi-
nal constructors—refer to Appendix 2.3 for a graphical interpretation. In
principle, the number of terminal constructors generated by the stochas-
tic process described in gen n is captured by the multi-type branching
process formulas. However, to predict the expected number of terminal

7The careful reader may notice that there is a pattern in the mean matrix if
inspected together with the definition of Tree ′. We prove in Section 6 that each
mij can be automatically calculated by simply exploiting type information.



64 5. TERMINAL CONSTRUCTORS

constructors generated by exercising gen 0 , we need to separately con-
sider a random process that only generates terminal constructors in order
to terminate. For this purpose, and assuming a maximum generation
depth n, we need to calculate the number of terminal constructors re-
quired to stop the generation process at the recursive arguments of each
non-terminal constructor at level (n− 1). In our Tree ′ example, this cor-
responds to two Leaf s for every NodeA and one Leaf for every NodeB
constructor at level (n− 1).

Since both random processes are independent, to predict the overall
expected number of terminal constructors, we can simply add the ex-
pected number of terminal constructors generated in each one of them.
Recalling our previous example, we obtain the following formula for
Tree ′ terminals as follows:

E[Leaf ] =
(
E[Pn−1]

T
)
.Leaf︸ ︷︷ ︸

branching process

+ 2·
(
E[Gn−1]

T
)
.NodeA︸ ︷︷ ︸

case (NodeA Leaf Leaf )

+ 1·
(
E[Gn−1]

T
)
.NodeB︸ ︷︷ ︸

case (NodeB Leaf )

The formula counts the Leaf s generated by the multi-type branching pro-
cess up to level (n−1) and adds the expected number of Leaf s generated
at the last level.

Although we can now predict the expected number of generated
Tree ′ constructors regardless of whether they are terminal or not, this
approach only works for data types with a single terminal constructor.

If we have a data type with multiple terminal constructors, we have
to consider the probabilities of choosing each one of them when filling
the recursive arguments of non-terminal constructors at the previous
level. For instance, consider the following ADT:

data Tree ′′ = LeafA | LeafB | NodeA Tree ′′ Tree ′′ | NodeB Tree ′′

Figure 7 shows the corresponding DRAGEN generator for Tree ′′.
Note there are two sets of probabilities to choose terminal nodes, one for
each random process. The p∗LeafA and p∗LeafB probabilities are used to
choose between terminal constructors at the last generation level. These
probabilities preserve the same proportion as their non-starred versions,
i.e., they are normalized to form a probability distribution:

p∗LeafA =
pLeafA

pLeafA + pLeafB
p∗LeafB =

pLeafB
pLeafA + pLeafB

In this manner, we can use the same generation probabilities for termi-
nal constructors in both random processes—therefore reducing the com-
plexity of our prediction engine implementation (described in Section 7).
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instance Arbitrary Tree ′′ where
arbitrary = sized gen

where
gen 0 = chooseWith

[ (p∗LeafA, pure LeafA), (p∗LeafB , pure LeafB)]
gen n = chooseWith

[ (pLeafA, pure LeafA), (pLeafB , pure LeafB)
, (pNodeA,NodeA 〈$〉 gen (n−1) 〈?〉 gen (n−1))
, (pNodeB ,NodeB 〈$〉 gen (n−1))]

Figure 7: Derived generator for Tree ′′

To compute the overall expected number of terminals, we need to
predict the expected number of terminal constructors at the last gener-
ation level which could be descendants of non-terminal constructors at
level (n− 1). More precisely:

E[LeafA] =
(
E[Pn−1]

T
)
.LeafA︸ ︷︷ ︸

branching process

+ 2·p∗LeafA ·
(
E[Gn−1]

T
)
.NodeA︸ ︷︷ ︸

expected leaves to fill NodeAs

+ 1·p∗LeafA ·
(
E[Gn−1]

T
)
.NodeB︸ ︷︷ ︸

expected leaves to fill NodeBs

where the case of E[LeafB ] follows analogously.

6 Mutually-Recursive and Composite ADTs
In this section, we introduce some extensions to our model that allow us
to derive DRAGEN generators for data types found in existing off-the-
shelf Haskell libraries. We start by showing how multi-type branching
processes naturally extend to mutually-recursive ADTs. Consider the
mutually recursive ADTs T1 and T2 with their automatically derived
generators shown in Figure 8.

Note the use of the QuickCheck’s function resize :: Int → Gen a →
Gen a , which resets the generation size of a given generator to a new
value. We use it to decrement the generation size at the recursive calls of
arbitrary that generate subterms of a mutually recursive data type.

The key observation is that we can ignore that A, B , C and D are con-
structors belonging to different data types and just consider each of them as
a kind of offspring on its own. Figure 9 visualizes the possible offspring
generated by the non-terminal constructor B (belonging to T1 ) with the
corresponding probabilities as labeled edges. Following the figure, we
obtain the expected number of Ds generated by B constructors as fol-
lows:
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data T1 = A | B T1 T2

data T2 = C | D T1

instance Arbitrary T1 where
arbitrary = sized gen where

gen 0 = pure A
gen n = chooseWith
[ (pA, pure A)
, (pB ,B 〈$〉 gen (n−1) 〈?〉 resize (n−1) arbitrary)]

instance Arbitrary T2 where
arbitrary = sized gen where

gen 0 = pure C
gen n = chooseWith
[(pC , pure C ), (pD,D 〈$〉 resize (n−1) arbitrary)]

Figure 8: Mutually recursive types T1 and T2 and their DRAGEN gen-
erators.

mBD = 1 · pA · pD + 1 · pB · pD = pD · (pA + pB) = pD

Doing similar calculations, we obtain the mean matrix MC for A, B ,
C , and D as follows:

MC =

0 0 0 0
pA pB pC pD

0 0 0 0

pA pB 0 0




A B C D

A

B

C

D

(12)

We define the mean of the initial generation asE[G0] = (pA, pB , 0, 0)—
we assign pC = pD = 0 since we choose to start by generating a value
of type T1 . With MC and E[G0] in place, we can apply the equations
explained through Section 4 to predict the expected number of A, B , C
and D constructors.

B
B A C

pA · pC

B A (D · · · )

pA · pD

B (B · · · ) C

pB · pC
B (B · · · ) (D · · · )

pB · pD

Figure 9: Possible offspring of constructor B .
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Tree ′

Tree ′ Tree ′

pNodeA

Tree ′

pNodeB

T1

T1 T2

pB

T2

T1

pD

Figure 10: Offspring as types

While this approach works, it completely ignores the types T1 and
T2 when calculatingMC ! For a large set of mutually-recursive data types
involving a large number of constructors, handling MC like this results
in a high computational cost. We show next how we cannot only shrink
this mean matrix of constructors but also compute it automatically by
making use of data type definitions.

Mean matrix of types If we analyze the mean matrices of Tree ′ (11) and
the mutually-recursive types T1 and T2 (12), it seems that determining
the expected number of offspring generated by a non-terminal construc-
tor requires us to count the number of occurrences in the ADT which the off-
spring belongs to. For instance, mNodeA,Leaf is 2 · pLeaf (10), where 2 is the
number of occurrences of Tree ′ in the declaration of NodeA. Similarly,
mBD is 1 · pD, where 1 is the number of occurrences of T2 in the declara-
tion of B . This observation means that instead of dealing with construc-
tors, we could directly deal with types!

We can think about a branching process as generating “place holders”
for constructors, where place holders can only be populated by construc-
tors of a certain type.

Figure 10 illustrates offspring as types for the definitions T1 , T2 , and
Tree ′. A place holder of type T1 can generate a place holder for type T1

and a place holder for type T2 . A place holder of type T2 can generate
a place holder of type T1 . A place holder of type Tree ′ can generate two
place holders of type Tree ′ when generating NodeA, one place holder
when generating NodeB , or zero place holders when generating a Leaf
(this last case is not shown in the figure since it is void). With these
considerations, the mean matrices of types for Tree ′, written MTree′ ; and
types T1 and T2 , written MT1T2

are defined as follows:

MTree′= 2 · pNodeA + pNodeB

[ ]Tree′

Tree′ MT1T2
=

pB pB

pD 0

[ ]T1 T2

T1

T2

Note howMTree′ shows that the mean matrices of types might reduce
a multi-type branching process to a simple-type one.
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Having the type matrix in place, we can use the following equation
(formally stated and proved in the Appendix 1) to soundly predict the
expected number of constructors of a given set of (possibly) mutually
recursive types:

(E[GCn ]).C
t
i = (E[GTn ]).Tt · pCt

i
(∀n ≥ 0)

Where GCn and GTn denotes the nth-generations of constructors and
type place holders respectively. Cti represents the ith-constructor of the
type Tt. The equation establishes that, the expected number of construc-
tors Cti at generation n consists of the expected number of type place
holders of its type (i.e., Tt) at generation n times the probability of gener-
ating that constructor. This equation allows us to simplify many of our
calculations above by simply using the mean matrix for types instead of
the mean matrix for constructors.

6.1 Composite Types

In this subsection, we extend our approach in a modular manner to deal
with composite ADTs, i.e., ADTs which use already defined types in
their constructors’ arguments and which are not involved in the branch-
ing process. We start by considering the ADT Tree modified to carry
booleans at the leaves:

data Tree = LeafA Bool | LeafB Bool Bool | · · ·
Where · · · denotes the constructors that remain unmodified. To pre-

dict the expected number of True (and analogously of False) construc-
tors, we calculate the multi-type branching process for Tree and multi-
ply each expected number of leaves by the number of arguments of type
Bool present in each one:

E[True] = pTrue · (1 · E[LeafA]︸ ︷︷ ︸
case LeafA

+2 · E[LeafB ]︸ ︷︷ ︸
case LeafB

)

In this case, Bool is a ground type like Int , Float , etc. Predictions be-
come more interesting when considering richer composite types involv-
ing, for instance, instantiations of polymorphic types. To illustrate this
point, consider a modified version of Tree where LeafA now carries a
value of type Maybe Bool :

data Tree = LeafA (Maybe Bool) | LeafB Bool Bool | · · ·
In order to calculate the expected number of Trues, now we need to
consider the cases that a value of type Maybe Bool actually carries a boolean
value, i.e., when a Just constructor gets generated:

E[True] = pTrue · (1 · E[LeafA] · pJust + 2 · E[LeafB ])
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LeafA

Just

True

pTrue

False

pFalse

pJust

Nothing

pNothing

Figure 11: Constructor
dependency graph.

In the general case, for constructor
arguments utilizing other ADTs, it is
necessary to know the chain of con-
structors required to generate “for-
eign” values—in our example, a True
value gets generated if a LeafA gets
generated with a Just constructor “in
between.” To obtain such informa-
tion, we create of a constructor depen-
dency graph (CDG), that is, a directed
graph where each node represents a
constructor and each edge represents its dependency. Each edge is la-
beled with its corresponding generation probability. Figure 11 shows the
CDG for Tree starting from the LeafA constructor. Having this graph to-
gether with the application of the multi-type branching process, we can
predict the expected number of constructors belonging to external ADTs.
It is enough to multiply the probabilities at each edge of the path be-
tween every constructor involved in the branching process and the de-
sired external constructor.

The extensions described so far enable our tool (presented in the
next section) to make predictions about QuickCheck generators for ADTs
defined in many existing Haskell libraries.

7 Implementation

DRAGEN is a tool chain written in Haskell that implements the multi-
type branching processes (Section 4 and 5) and its extensions (Section 6)
together with a distribution optimizer, which calibrates the probabilities
involved in generators to fit developers’ demands. DRAGEN synthesizes
generators by calling the Template Haskell function dragenArbitrary ::
Name → Size → CostFunction → Q [Dec ], where developers indicate
the target ADT for which they want to obtain a QuickCheck generator; the
desired generation size, needed by our prediction mechanism in order to
calculate the distribution at the last generation level; and a cost function
encoding the desired generation distribution.

The design decision to use a probability optimizer rather than search
for an analytical solution is driven by two important aspects of the prob-
lem we aim to solve. Firstly, the computational cost of exactly solving
a non-linear system of equations (such as those arising from branching
processes) can be prohibitively high when dealing with a large number
of constructors, thus a large number of unknowns to be solved for. Sec-
ondly, the existence of such exact solutions is not guaranteed due to the
implicit invariants the data types under consideration might have. In
such cases, we believe it is much more useful to construct a distribution
that approximates the user’s goal, than to abort the entire compilation
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process. We give an example of this approximate solution finding behav-
ior later in this section.

7.1 Cost Functions

The optimization process is guided by a user-provided cost function. In
our setting, a cost function assigns a real number (a cost) to the combina-
tion of a generation size (chosen by the user) and a mapping from con-
structors to probabilities:

type CostFunction = Size → ProbMap → Double

Type ProbMap encodes the mapping from constructor names to real
numbers. Our optimization algorithm works by generating several prob-
ability mapping candidates that are evaluated through the provided cost
function in order to choose the most suitable one. Cost functions are
expected to return a smaller positive number as the predicted distribu-
tion obtained from its parameters gets closer to a certain target distribu-
tion, which depends on what property that particular cost function is in-
tended to encode. Then, the optimizer simply finds the best ProbMap by
minimizing the provided cost function.

Currently, our tool provides a basic set of cost functions to easily de-
scribe the expected distribution of the derived generator. For instance,
uniform :: CostFunction encodes constructor-wise uniform generation,
an interesting property that naturally arises from our generation pro-
cess formalization. It guides the optimization process to a generation
distribution that minimizes the difference between the expected num-
ber of each generated constructor and the generation size. Moreover,
the user can restrict the generation distribution to a certain subset of
constructors using the cost functions only :: [Name ] → CostFunction
and without :: [Name ] → CostFunction to describe these restrictions. In
this case, the whitelisted constructors are then generated following the
uniform behavior. Similarly, if the branching process involves mutually
recursive data types, the user could restrict the generation to a certain
subset of data types by using the functions onlyTypes and withoutTypes .
Additionally, when the user wants to generate constructors according to
certain proportions, weighted :: [(Name, Int)]→ CostFunction allows to
encode this property, e.g. three times more LeafA’s than LeafB ’s.

Table 1 shows the number of expected and observed constructors
of different Tree generators obtained by using different cost functions.
The observed expectations were calculated averaging the number of con-
structors across 100000 generated values. Firstly, note how the generated
distributions are soundly predicted by our tool. In our tests, the small dif-
ferences between predictions and actual values disappear as we increase
the number of generated values. As for the cost functions’ behavior, there
are some interesting aspects to note. For instance, in the uniform case the
optimizer cannot do anything to break the implicit invariant of the data
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Table 1: Predicted and actual distributions for Tree generators using dif-
ferent cost functions.

Cost Function Predicted Expectation Observed Expectation
LeafA LeafB LeafC Node LeafA LeafB LeafC Node

uniform 5.26 5.26 5.21 14.73 5.27 5.26 5.21 14.74
weighted [(′LeafA, 3 ), (

′LeafB , 1 ), (
′LeafC , 1 )] 30.07 9.76 10.15 48.96 30.06 9.75 10.16 48.98

weighted [(′LeafA, 1 ), (
′Node, 3 )] 10.07 3.15 17.57 29.80 10.08 3.15 17.58 29.82

only [ ′LeafA,
′Node ] 10.41 0 0 9.41 10.43 0 0 9.43

without [ ′LeafC ] 6.95 6.95 0 12.91 6.93 6.92 0 12.86

type: every binary tree with n nodes has n+1 leaves. Instead, it converges
to a solution that “approximates” a uniform distribution around the gen-
eration size parameter. We believe this is desirable behavior, to find an
approximate solution when certain invariants prevent the optimization
process from finding an exact solution. This way the user does not have
to be aware of the possible invariants that the target data type may have,
obtaining a solution that is good enough for most purposes. On the other
hand, notice that in the weighted case at the second row of Table 1, the ex-
pected number of generated Nodes is considerably large. This construc-
tor is not listed in the proportions list, hence the optimizer can freely ad-
just its probability to satisfy the proportions specified for the leaves.

7.2 Derivation Process

DRAGEN’s derivation process starts at compile-time with a type reifica-
tion stage that extracts information about the structure of the types un-
der consideration. It follows an intermediate stage composed of the opti-
mizer for probabilities used in generators, which is guided by our multi-
type branching process model, parameterized on the cost function pro-
vided. This optimizer is based on a standard local-search optimization
algorithm that recursively chooses the best mapping from constructors
to probabilities in the current neighborhood. Neighbors are ProbMaps,
determined by individually varying the probabilities for each constructor
with a predetermined ∆. Then, to determine the “best” probabilities, the
local-search applies our prediction mechanism to the immediate neigh-
bors that have not yet been visited by evaluating the cost function to se-
lect the most suitable next candidate. This process continues until a local
minimum is reached when there are no new neighbors to evaluate, or if
each step improvement is lower than a minimum predetermined ε.

The final stage synthesizes a Arbitrary type-class instance for the
target data types using the optimized generation probabilities. For this
stage, we extend some functionality present in MegaDeTH in order to
derive generators parameterized by our previously optimized probabili-
ties. Refer to Appendix 2.4 for further details on the cost functions and
algorithms addressed by this section.
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8 Case Studies
We start by comparing the generators for the ADT Tree derived by
MegaDeTH and Feat, presented in Section 2, with the corresponding gen-
erator derived by DRAGEN using a uniform cost function. We used a
generation size of 10 both for MegaDeTH and DRAGEN, and a genera-
tion size of 400 for Feat—that is, Feat will generate test cases of maximum
400 constructors, since this is the maximum number of constructors gen-
erated by our tool using the generation size cited above. Figure 12 shows
the differences between the complexity of the generated values in terms
of the number of constructors. As shown in Figure 3, generators derived
by MegaDeTH and Feat produce very narrow distributions, being unable
to generate a diverse variety of values of different sizes. In contrast, the
DRAGEN optimized generator provides a much wider distribution, i.e.,
from smaller to bigger values.

Figure 12: MegaDeTH (N) vs. Feat (�) vs. DRAGEN (•) generated distribu-
tions for type Tree .

It is likely that the richer the values generated, the better the chances
of covering more code, and thus of finding more bugs. The next case
studies provide evidence in that direction.

Although DRAGEN can be used to test Haskell code, we follow
the same philosophy as QuickFuzz, targeting three complex and widely
used external programs to evaluate how well our derived generators be-
have. These applications are GNU bash 4.4—a widely used Unix shell,
GNU CLISP 2.49—the GNU Common Lisp compiler, and giffix—a small
test utility from the GIFLIB 5.1 library focused on reading and writing
Gif images. It is worth noticing that these applications are not written
in Haskell. Nevertheless, there are Haskell libraries designed to inter-
operate with them: language-bash, atto-lisp, and JuicyPixels, respectively.
These libraries provide ADT definitions which we used to synthesize
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DRAGEN generators for the inputs of the aforementioned applications.
Moreover, they also come with serialization functions that allow us to
transform the randomly generated Haskell values into the actual test
files that we used to test each external program. The case studies con-
tain mutually recursive and composite ADTs with a wide number of
constructors (e.g., GNU bash spans 31 different ADTs and 136 different
constructors)—refer to 2.5 for a rough estimation of the scale of such data
types and the data types involved with them.

For our experiments, we use the coverage measure known as execu-
tion path employed by American Fuzzy Lop (AFL) [21]—a well known
fuzzer. It was chosen in this work since it is also used in the work by
Grieco et al. [15] to compare MegaDeTH with other techniques. The pro-
cess consists of the instrumentation of the binaries under test, making
them able to return the path in the code taken by each execution. Then,
we use AFL to count how many different executions are triggered by a
set of randomly generated files—also known as a corpus. In this evalu-
ation, we compare how different QuickCheck generators, derived using
MegaDeTH and using our approach, result in different code coverage
when testing external programs, as a function of the size of a set of inde-
pendently, randomly generated corpora. We have not been able to auto-
matically derive such generators using Feat, since it does not work with
some Haskell extensions used in the bridging libraries.

Figure 13: Path coverage comparison between MegaDeTH (N) and DRA-
GEN (•).

We generated each corpus using the same ADTs and generation sizes
for each derivation mechanism. We used a generation size of 10 for CLISP
and bash files, and a size of 5 for Gif files. For DRAGEN, we used uniform
cost functions to reduce any external bias. In this manner, any observed
difference in the code coverage triggered by the corpora generated using
each derivation mechanism is entirely caused by the optimization stage
that our predictive approach performs, which does not represent an ex-
tra effort for the programmer. Moreover, we repeat each experiment 30
times using independently generated corpora for each combination of
derivation mechanism and corpus size.
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Figure 13 compares the mean number of different execution paths
triggered by each pair of generators and corpus sizes, with error bars
indicating 95% confidence intervals of the mean.

It is easy to see how the DRAGEN generators synthesize test cases ca-
pable of triggering a much larger number of different execution paths in
comparison to MegaDeTH ones. Our results indicate average increases
approximately between 35% and 41% with an standard error close to
0.35% in the number of different execution paths triggered in the pro-
grams under test.

An attentive reader might remember that MegaDeTH tends to derive
generators which produce very small test cases. If we consider that small
test cases should take less time (on average) to be tested, is fair to think
there is a trade-off between being able to test a bigger number of smaller
test cases or a smaller number of bigger ones having the same time avail-
able. However, when testing external software like in our experiments,
it is important to consider the time overhead introduced by the operat-
ing system. In this scenario, it is much more preferable to test interesting
values over smaller ones. In our tests, size differences between the gener-
ated values of each tool does do not result in significant differences in the
runtimes required to test each corpora—refer to Appendix 2.5. A user is
most likely to get better results by using our tool instead of MegaDeTH,
with virtually the same effort.

We also remark that, if we run sufficiently many tests, then the ex-
pected code coverage will tend towards 100% of the reachable code in
both cases. However, in practice, our approach is more likely to achieve
higher code coverage for the same number of test cases.

9 Related Work
Fuzzers are tools to tests programs against randomly generated unex-
pected inputs. QuickFuzz [14, 15] is a tool that synthesizes data with rich
structure, that is, well-typed files which can be used as initial “seeds” for
state-of-the-art fuzzers—a work flow which discovered many unknown
vulnerabilities. Our work could help to improve the variation of the gen-
erated initial seeds, by varying the distribution of QuickFuzz generators—
an interesting direction for future work.

SmallCheck [27] provides a framework to exhaustively test data sets
up to a certain (small) size. The authors also propose a variation called
Lazy SmallCheck, which avoids the generation of multiple variants which
are passed to the test, but not actually used.

QuickCheck has been used to generate well-typed lambda terms in
order to test compilers [25]. Recently, Midtgaard et al. extend such a
technique to test compilers for impure programming languages [23].

Luck [19] is a domain specific language for writing testing properties
and QuickCheck generators at the same time. We see Luck’s approach as
orthogonal to ours, which is mostly intended to be used when we do
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not know any specific property of the system under test, although we
consider that borrowing some functionality from Luck into DRAGEN is
an interesting path for future work.

Recently, Lampropoulos et al. propose a framework to automatically
derive random generators for a large subclass of Coqs’ inductively de-
fined relations [20]. This derivation process also provides proof terms
certifying that each derived generator is sound and complete with re-
spect to the inductive relation it was derived from.

Boltzmann models [11] are a general approach to randomly generat-
ing combinatorial structures such as trees and graphs—also extended
to work with closed simply-typed lambda terms [5]. By implementing
a Boltzmann sampler, it is possible to obtain a random generator built
around such models which uniformly generates values of a target size
with a certain size tolerance. However, this approach has practical lim-
itations. Firstly, the framework is not expressive enough to represent
complex constrained data structures, e.g red-black trees. Secondly, Boltz-
mann samplers give the user no control over the distribution of gener-
ated values besides ensuring size-uniform generation. They work well
in theory but further work is required to apply them to complex struc-
tures [26]. Conversely, DRAGEN provides a simple mechanism to predict
and tune the overall distribution of constructors analytically at compile-
time, using statically known type information, and requiring no runtime
reinforcements to ensure the predicted distributions. Future work will
explore the connections between branching processes and Boltzmann
models.

Similarly to our work, Feldt et al. propose GödelTest [13], a search-
based framework for generating biased data. It relies on non-determinism
to generate a wide range of data structures, along with metaheuristic
search to optimize the parameters governing the desired biases in the
generated data. Rather than using metaheuristic search, our approach
employs a completely analytical process to predict the generation distri-
bution at each optimization step. A strength of the GödelTest approach
is that it can optimize the probability parameters even when there is no
specific target distribution over the constructors—this allows exploiting
software behavior under test to guide the parameter optimization.

The efficiency of random testing is improved if the generated inputs
are evenly spread across the input domain [6]. This is the main idea of
Adaptive Random Testing (ART) [7]. However, this work only covers the
particular case of testing programs with numerical inputs and it has also
been argued that adaptive random testing has inherent inefficiencies
compared to random testing [1]. This strategy is later extended in [8] for
object-oriented programs. These approaches present no analysis of the
distribution obtained by the heuristics used, therefore we see them as
orthogonal work to ours.
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10 Final Remarks
We discover an interplay between the stochastic theory of branching pro-
cesses and algebraic data types structures. This connection enables us to
describe a solid mathematical foundation to capture the behavior of our
derived QuickCheck generators. Based on our formulas, we implement
a heuristic to automatically adjust the expected number of constructors
being generated as a way to control generation distributions.

One holy grail in testing is the generation of structured data which
fulfills certain invariants. We believe that our work could be used to
enforce some invariants on data “up to some degree.” For instance, by
inspecting programs’ source code, we could extract the pattern-matching
patterns from programs (e.g., (Cons (Cons x ))) and derive generators
which ensure that such patterns get exercised a certain amount of times
(on average)—intriguing thoughts to drive our future work.
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1 Demonstrations
In this appendix, we provide the formal development to show that the
mean matrix of types can be used to soundly predict the distribution of
constructors.

We start by defining some terminology. First, let Tt be a data type
defined as a sum of type constructors:

Tt := Ct1 + Ct2 + · · ·+ Ctn

Where each constructor is defined as a product of data types:

Ctc := T1 × T2 × · · · × Tm

We will define the following observation functions:

cons(Tt) = {Ctc}nc=1

args(Ctc) = {Tj}mj=1

|Tt| = |cons(Tt)| = n

We will also define the branching factor from Cui to Tv as the natural num-
ber β(Tv, Cui ) denoting the number of occurrences of Tv in the arguments
of Cui :

β(Tv, C
u
i ) = |{Tk ∈ args(Cui ) | Tk = Tv}|

Before showing our main theorem, we need some preliminary propo-
sitions. The following one relates the mean of reproduction of construc-
tors with their types and the number of occurrences in the ADT declara-
tion.

Theorem 1. Let MC be the mean matrix for constructors for a given, possibly
mutually recursive data types {Tt}nt=1 and type constructors {Cti}

|Tt|
i=1. Assum-

ing pCt
i

to be the probability of generating a constructor Cti ∈ cons(Tt) when-
ever a value of type T t is needed, then it holds that:

mCu
i C

v
j
= β(Tv, C

u
i ) · pCv

j
(13)

Proof 1 Let mCu
i C

v
j

be an element of MC , we know that mCu
i C

v
j

represents
the expected number of constructors Cvj ∈ cons(Tv) generated whenever a
constructor Cui ∈ cons(Tu) is generated. Since every constructor is composed
of a product of (possibly) many arguments, we need sum the expected number
of constructors Cvj generated by each argument of Cui of type Tv—the expected
number of constructors Cvj generated by an argument of type different than Tv
is null. For this, we define the random variable X

Cu
i C

v
j

k capturing the number
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of constructors Cvj generated by the k-th argument of Cui as follows:

X
Cu

i C
v
j

k : cons(Tv)→ N

X
Cu

i C
v
j

k (Cvc ) =

{
1 if c = j

0 otherwise

We can calculate the probabilities of generating zero or one constructors Cvj by
the k-th argument of Cui as follows:

P (X
Cu

i C
v
j

k = 0) = 1− pCv
j

P (X
Cu

i C
v
j

k = 1) = pCv
j

Then, we can calculate the expectancy of each X
Cu

i C
v
j

k :

E[X
Cu

i C
v
j

k ] = 1 · P (XCu
i C

v
j

k = 1) + 0 · P (XCu
i C

v
j

k = 0) = pCv
j

(14)

Finally, we can calculate the expected number of constructors Cvj generated
whenever we generate a constructor Cui by adding the expected number of Cvj
generated by each argument of Cui of type Tv :

mCu
i C

v
j
=

∑
{Tk∈args(Cu

i ) | Tk=Tv}

E[X
Cu

i C
v
j

k ]

=
∑

{Tk∈args(Cu
i ) | Tk=Tv}

pCv
j

(by (14))

= pCv
j
·

∑
{Tk∈args(Cu

i ) | Tk=Tv}

1 (pCv
j

is constant)

= pCv
j
· |{Tk ∈ args(Cvj ) | Tk = Tv}| (

∑
S

1 = |S|)

= pCv
j
· β(Tv, Cui ) (by def. of β)

The next propositions relates the mean of reproduction of types with
their constructors.

Theorem 2. Let MT be the mean matrix for types for a given, possibly mutu-
ally recursive data types {Tt}nt=1 and type constructors {Cti}

|Tt|
i=1. Assuming

pCt
i

to be the probability of generating a constructor Cti ∈ cons(Tt) whenever
a value of type Tt is needed, then it holds that:

mTuTv =
∑

Cu
k∈cons(Tu)

β(Tv, C
u
k ) · pCu

k
(15)

Proof 2 Let mTuTv
be an element of MT , we know that mTuTv

represents the
expected number of placeholders of type Tv generated whenever a placeholder
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of type Tu is generated, i.e. by any of its constructors. Therefore, we need to
average the number of place holders of type Tv appearing on each constructor of
Tu. For that, we introduce the random variable Y uv capturing this behavior.

Y uv : cons(Tu)→ N
Y uv(Cuk ) = β(Tv, C

u
k )

And we can obtain mTuTv by calculating the expected value of Y uv as follows.

mTuTv
= E[Y uv]

=
∑

Cu
k ∈ cons(Tu)

β(Tv, C
u
k ) · P (Y uv = Cuk ) (def. of E[Y uv])

=
∑

Cu
k ∈ cons(Tu)

β(Tv, C
u
k ) · pCu

k
(def. of pCu

k
)

The next proposition relates one entry in MT with its corresponding
in MC .

Theorem 3. Let MC and MT be the mean matrices for constructors and types
respectively for a given, possibly mutually recursive data types {Tt}nt=1 and
type constructors {Cti}

|Tt|
i=1. Assuming pCt

i
to be the probability of generating a

type constructor Cti ∈ cons(Tt) whenever a value of type Tt is needed, then it
holds that:

pCv
i
·mTuTv

=
∑

Cu
j ∈cons(Tu)

mCu
j C

v
i
· pCu

j
(16)

Proof 3 Let Cui and Cvj be type constructors of Tu and T v respectively. Then,
by (13) and (15) we have:

mCu
i C

v
j
= β(Tv, C

u
i ) · pCv

j
(17)

mTuTv
=

∑
Cu

k∈cons(Tu)

β(Tv, C
u
k ) · pCu

k
(18)

Now, we can rewrite (17) as follows:

β(Tv, C
u
i ) =

mCu
i C

v
j

pCv
j

(if pCv
j
6= 0) (19)
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(In the case that pCv
j
= 0, the last equation in this proposition holds trivially by

(17).) And by replacing (19) in (18) we obtain:

mTuTv
=

∑
Cu

k∈cons(Tu)

mCu
i C

v
j

pCv
j

· pCu
k

mTuTv
=

1

pCv
j

·
∑

Cu
k∈cons(Tu)

mCu
i C

v
j
· pCu

k
(pCv

j
constant)

pCv
j
·mTuTv =

∑
Cu

k∈cons(Tu)

mCu
i C

v
j
· pCu

k

Now, we proceed to prove our main result.

Theorem 4. Consider a QuickCheck generator for a (possibly) mutually recur-
sive data types {Tt}kt=1 and type constructors {Cti}

|T t|
i=1 . We assume pCt

i
as the

probability of generating a type constructor Cti ∈ cons(Tt) when a value of
type Tt is needed. We will call Tr (1 ≤ r ≤ k) to the generation root data type,
andMC andMT to the mean matrices for the multi-type branching process cap-
turing the generation behavior of type constructors and types respectively. The
branching process predicting the expected number of type constructors at level
n is governed by the formula:

E[GCn ]
T = E[GC0 ]

T ·
(
I − (MC)

n+1

I −MC

)
In the same way, the branching process predicting the expected number of type
placeholders at level n is given by:

E[GTn ]
T = E[GT0 ]

T ·
(
I − (MT )

n+1

I −MT

)
whereGCn denotes the constructors population at the level n, andGTn denotes the
type placeholders population at the level n. The expected number of constructors
Cti at the n-th level is given by the expected constructors population at the n-
level E[GCn ] indexed by the corresponding constructor. Similarly, the expected
number of placeholders of type Tt at the n-th level is given by the expected types
population at the n-level E[GTn ] indexed by the corresponding type. The initial
constructors population E[GC0 ] is defined as the probability of each constructor
if it belongs to the root data type, and zero if it belong to any other data type:

E[GC0 ].C
t
i =

{
pCt

i
if t = r

0 otherwise

The initial type placeholders population is defined as the almost surely probabil-
ity for the root type, and zero for any other type:

E[GT0 ].Tt =

{
1 if t = r

0 otherwise
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Finally, it holds that:

(E[GCn ]).C
t
i = (E[GTn ]).T

t · pCt
i

In other words, the expected number of constructorsCti at the n-th level consists
of the expected number of placeholders of its type (i.e., Tt) at level n times the
probability to generate that constructor.

Proof 4 By induction on the generation size n.

– Base case
We want to prove (E[GC0 ]).C

t
i = (E[GT0 ]).Tt · pCt

i
.

Let Tt be a data type from the Galton-Watson branching process.

• If Tt = Tr then by the definitions of the initial type constructors and
type placeholders populations we have:

(E[CC0 ]).Cti = pCt
i

(E[GT0 ]).Tt = 1

And the theorem trivially holds by replacing (E[GC0 ]).C
t
i and (E[GT0 ]).Tt

with the previous equations in the goal.

• If Tt 6= Tr then by the definitions of the initial type constructors and
type placeholders populations we have:

(E[GC0 ]).C
t
i = 0 (E[GT0 ]).Tt = 0

And once again, the theorem trivially holds by replacing (E[GC0 ]).C
t
i

and (E[GT0 ]).Tt with the previous equations in the goal.
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– Inductive case
We want to prove (E[GCn ]).C

t
i = (E[GTn ]).Tt · pCt

i
.

For simplicity, we will call Γ = {Tt}kt=1.

(E[GCn ]).C
t
i

= E

∑
Tk∈Γ

 ∑
Ck

j ∈cons(Tk)

(GC(n−1)).C
k
j ·mCk

j C
t
i

 (by G.W. proc.)

=
∑
Tk∈Γ

E

 ∑
Ck

j ∈cons(Tk)

(GC(n−1)).C
k
j ·mCk

j C
t
i

 (by prob.)

=
∑
Tk∈Γ

 ∑
Ck

j ∈cons(Tk)

E[(GC(n−1)).C
k
j ·mCk

j C
t
i
]

 (by prob.)

=
∑
Tk∈Γ

 ∑
Ck

j ∈cons(Tk)

E[(GC(n−1)).C
k
j ] ·mCk

j C
t
i

 (by prob.)

=
∑
Tk∈Γ

 ∑
Ck

j ∈cons(Tk)

(E[GC(n−1)]).C
k
j ·mCk

j C
t
i

 (by linear alg.)

=
∑
Tk∈Γ

 ∑
Ck

j ∈cons(Tk)

(E[GT(n−1)]).Tt · pCk
j
·mCk

j C
t
i

 (by I.H.)

=
∑
Tk∈Γ

(E[GT(n−1)]).Tt ·
∑

Ck
j ∈cons(Tk)

pCk
j
·mCk

j C
t
i

(by linear alg.)

=
∑
Tk∈Γ

(E[GT(n−1)]).Tt · pCt
i
·mTkTt

(by (16))

=
∑
Tk∈Γ

(E[GT(n−1)]).Tt ·mTkTt · pCt
i

(rearrange)

=
∑
Tk∈Γ

E[(GT(n−1)).Tt] ·mTkTt
· pCk

i
(by linear alg.)

=
∑
Tk∈Γ

E[(GT(n−1)).Tt ·mTkTt
] · pCt

i
(by prob.)

= E

[∑
Tk∈Γ

(GT(n−1)).Tt ·mTkTt

]
· pCt

i
(by prob.)

= (E[GTn ]).Tt · pCt
i

(by G.W. proc.)
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2 Additional Information
This appendix is meant to provide further analyses for the aspects pre-
sented throughout this work that would not fit into the available space.

2.1 Termination issues with library derive

As we have introduced in Section 2, the library derive provides an easy al-
ternative to automatically synthesize random generators in compile time.
However, in presence of recursive data types, the generators obtained
with this tool lack mechanisms to ensure termination. For instance, con-
sider the following data type definition and its corresponding generator
obtained with derive:

data T = A | B T T | C T T

instance Arbitrary T where
arbitrary = oneof

[pure A
,B 〈$〉 arbitrary 〈?〉 arbitrary
,C 〈$〉 arbitrary 〈?〉 arbitrary ]

When using this generator, every constructor in the obtained generator
has the same probability of being chosen. Additionally, at each point of the
generation process, if we randomly generate a recursive type construc-
tor (either B or C ), then we also need to generate two new T values in
order to fill the arguments of the chosen type constructor. As a result, it
is expected (on average) that each time QuickCheck generates a recursive
constructor (i.e., B or C ) at one level, more than one recursive constructor
is generated at the next level—thus, frequently leading to an infinite gener-
ation loop.

Figure 14: Distribution of (the
amount of) T constructors induced
by derive.

This behavior can be formal-
ized using the concept known
as probability generating function,
where it is proven that the ex-
tinction probability of a generated
value d (and thus the termination
of the generation) can be calcu-
lated by finding the smallest fix
point of the generation recurrence.
In our example, this is the small-
est d such that d = PA + (PB +
PC) ·d2 = (1/3)+(2/3) ·d2, where
Pi denotes the probability of gen-
erating a i constructor. In this case
d = 1/2.

Figure 14 provides an em-
pirical verification of this non-
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terminating behavior. It shows the distribution (in terms of amount of
constructors) of 100000 randomly generated T values obtained using the
derive generator shown above. The black bar on the right represents the
amount of values that induced an infinite generation loop. Such values
were recognized using a sufficiently big timeout. The random generation
gets stuck in an infinite generation loop almost exactly half of the times
we generate a random T value.

In practice, this non terminating behavior gets worse as we increase
either the number of recursive constructors or the number of their recur-
sive arguments in the data type definition, since this increases the proba-
bility of choosing a recursive constructor each time we need to generate
a subterm.

2.2 Multi-type Branching Processes

We will verify the soundness of the step noted as (?), used to deduce
E[Gjn|Gn−1] in Section 4. In first place, note that E[Gjn|Gn−1] can be
rewritten as:

E[Gjn|Gn−1] = E

 d∑
i=1

Gn−1∑
p=1

ξpij


Where symbol ξpij denotes the number of offspring of kind j that the
parent p of kind i produces. If the parent p has not kind i, then ξpij = 0.
Essentially, the sums simply iterate on all of the different kind of parents
present in the nth-generation, counting the number of offspring of kind
j that they produce. Then, since the expectation of the sum is the sum of
expectation, we have that:

E[Gjn|Gn−1] =
d∑
i=1

Gn−1∑
p=1

E
[
ξpij
]

In the inner sum, there are some terms which are 0 and others which
are the expected offspring of kind j that a parent of kind i produces.
As introduced in Section 4, we capture with random variable Rij the
distribution governing that a parent of kind i produces offspring of kind
j. Finally, by filtering out all the terms which are 0 in the inner sum, i.e.,
where p 6= i, we obtain the expected result:

E[Gjn|Gn−1] =
d∑
i=1

Gi(n−1) ·E[Rij ]

2.3 Terminal constructors

As we explained in Section 5, our tool synthesizes random generators
for which the generation of terminal constructors can be thought of two
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different random processes. More specifically, the first (n−1) generations
of the branching process are composed of a mix of non-terminals and
terminals constructors. The last level, however, only contains terminal
constructors since the size limit has been reached. Figure 15 shows a
graphical representation of the overall process.

•
•
•
��

�

�•
•
��

•
��

G0

G1

Gn−1

Gn

Figure 15: Generation processes of non-terminal (•) and terminal (�)
constructors.

2.4 Implementation

In this subsection, will give more details on the implementation of our
tool. Firstly, Figure 16 shows a schema for the automatic derivation
pipeline our tool performs. The user provides a target data type, a cost
function and a desired generation size, and our tool returns an optimized
random generator. The components marked in red are heavily depen-
dent on Template Haskell and refer to the type introspection and code
generation stages of DRAGEN, while the intermediate stages (in blue) are
composed by our prediction mechanism and the probabilities optimizer.

Cost functions The probabilities optimizer that our tool implements es-
sentially works minimizing a provided cost function that encodes the de-
sired distribution of constructors at the optimized generator. As shown
in Section 7, DRAGEN comes with a minimal set of useful cost functions.

Type
reification

Probabilities
optimization

Code
generation

Distribution
prediction

Optimized
generator

Target
data type

Cost
function

Generation
size

Figure 16: Generation schema.
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Such functions are built around the Chi-Square Goodness of Fit Test [4], a
statistical test used quantify how the observed value of a given phenom-
ena is significantly different from its expected value:

χ2 =
∑
Ci∈Γ

(observedi − expectedi)2

expectedi

Where Γ is a subset of the constructors involved in the generation pro-
cess; observedi corresponds to the predicted number of generated Ci con-
structors; and expectedi corresponds to the amount of constructors Ci
desired in the distribution of the optimized generator. This fitness test
was chosen for empirical reasons, since it provides better results in prac-
tice when finding probabilities that ensure certain distributions.

In this appendix we will take special attention to the weighted cost
function, since it is the most general one that our tool provides—the re-
maining cost functions provided could be expressed in terms of weighted .
This function uses our previously discussed prediction mechanism to ob-
tain a prediction of the constructors distribution under the current given
probabilities and the generation size (see obs), and uses it to calculate
the Chi-Square Goodness of Fit Test. A simplified implementation of this
cost function is as follows.

weighted :: [(Name,Double)]→ CostFunction
weighted weights size probs = chiSquare obs exp

where
chiSquare = sum ◦ zipWith (λo e → (o−e) squared / e)
obs = predict size probs
exp = map weight (Map.keys probs)
weight con = case lookup con weights of

Just w → w∗size
Nothing → 0

Note how we multiply each weight by the generation size provided
by the user (case Just w ), as a simple way to control the relative size of
the generated values. Moreover, the generation probabilities for the con-
structors not listed in the proportions list do not contribute to the cost
(case Nothing), and thus they can be freely adjusted by the optimizer to
fit the proportions of the listed constructors. In this light, the uniform
cost function can be seen as a special case of weighted , where every con-
structor is listed with weight 1.

Optimization algorithm As introduced in Section 7, our tool makes use of
an optimization mechanism in order to obtain a suitable generation prob-
abilities assignment for its derived generators. Figure 17 illustrates a sim-
plified implementation of our optimization algorithm. This optimizer
works selecting recursively the most suitable neighbor, i.e., a probability
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optimize :: CostFunction → Size → ProbMap → ProbMap
optimize cost size init = localSearch init [ ]

where
localSearch focus visited
| null new = focus
| gain 6 ε = focus
| otherwise = localSearch best frontier
where

best = minimumBy (comparing (cost size)) new
new = neighbors focus\\(focus : visited)
frontier = new ++ visited
gain = cost size focus−cost size best

Figure 17: Optimization algorithm.

neighbors :: ProbMap → [ProbMap ]
neighbors probs = concatMap perturb (Map.keys probs)

where
perturb con = [norm (adj (+∆) con)

,norm (adj (max 0 ◦ (−∆)) con)]
norm m = fmap (/sum (Map.elems m)) m
adj f con = Map.adjust f con probs

Figure 18: Immediate neighbors of a probability distribution.

assignment that it close to the current one and that minimizes the output
of the provided cost function. This process is repeated until a local min-
imum is found, when the are no further neighbors that remains unvis-
ited; or if the step improvement is below a minimum predetermined ε.

In our setting, neighbors are obtained by taking the current proba-
bility distribution, and constructing a list of paired probability distribu-
tions, where each one is constructed from the current distribution, ad-
justing each constructor probability by ±∆. This behavior is shown in
Figure 18. Note the need of bound checking and normalization of the
new neighbors in order to enforce a probability distribution (max 0 and
norm). Each pair of neighbors is then joined together and returned as the
current probability distribution immediate neighborhood.

2.5 Case studies

As explained in Section 8, our test cases targeted three complex programs
to evaluate the power of our derivation tool, i.e. GNU CLISP 2.49, GNU
bash 4.4 and GIFLIB 5.1. We derived random generators for each test
case input format using some existent Haskell libraries. Each one of
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Table 2: Type information for ADTs used in the case studies.

Case Study #Types #Constructors Composite types Mut. Rec. types

Lisp 7 14 Yes Yes
Bash 31 136 Yes Yes
Gif 16 30 Yes No

these libraries contains data types definition encoding the structure of
the input format of its corresponding test case, as well as serialization
functions that we use to convert randomly generated Haskell values into
actual test input files. Table 2 illustrates the complexity of the bridging
libraries used in our case studies.

Testing runtimes As we have shown, MegaDeTH tends to derive genera-
tors which produce very small test cases. However, in our tests, the size
differences in the test cases generated by each tool does not produce re-
markable differences in the runtimes required to test each corpora. Fig-
ure 19 shows the execution time required to test each case of the biggest
corpora previously generated by each tool consisting of 1000 test cases.

Figure 19: Execution time required to test the biggest randomly gener-
ated corpora consisting of 1000 files.
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ABSTRACT

Automatic generation of random values described by algebraic data
types (ADTs) is often a hard task. State-of-the-art random testing tools
can automatically synthesize random data generators based on ADTs
definitions. In that manner, generated values comply with the structure
described by ADTs, something that proves useful when testing software
which expects complex inputs. However, it sometimes becomes neces-
sary to generate structural richer ADTs values in order to test deeper soft-
ware layers. In this work we propose to leverage static information found
in the codebase as a manner to improve the generation process. Namely,
our generators are capable of considering how programs branch on input
data as well as how ADTs values are built via interfaces. We implement a
tool, responsible for synthesizing generators for ADTs values while pro-
viding compile-time guarantees about their distributions. Using compile-
time predictions, we provide a heuristic that tries to adjust the distribu-
tion of generators to what developers might want. We report on prelimi-
nary experiments where our approach shows encouraging results.
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1 Introduction
Random testing is a promising approach for finding bugs [1, 10, 11].
QuickCheck [3] is the dominant tool of this sort used by the Haskell com-
munity. It requires developers to specify (i) testing properties describing
programs’ expected behavior and (ii) random data generators based on the
types of the expected inputs (e.g., integers, strings, etc.). QuickCheck then
generates random test cases and reports violating testing properties.

QuickCheck comes equipped with random generators for built-in types,
while it requires to manually write generators for user-defined ADTs.
Recently, there has been a proliferation of tools to automatically derive
QuickCheck generators for ADTs [5,9,14,15,17]. The main difference about
these tools lies on the guarantees provided to ensure the termination of
the generation process and the distribution of random values. Despite their
differences, these tools guarantee that generated values are well-typed. In
other words, generated values follow the structure described by ADT
definitions.

Well-typed ADT values are specially useful when testing programs
which expect highly structured inputs like compilers [12, 13, 16]. Gener-
ating ADT values also proves fruitful when looking for vulnerabilities in
combination with fuzzers [8, 9]. Despite these success stories, ADT type-
definitions do not often capture all the invariants expected from the data
that they are intended to model. As a result, even if random values are
well-typed, they might not be built with enough structure to penetrate
into deep software layers.

In this work, we identify two different sources of structural informa-
tion that can be statically exploited to improve the generation process
of ADT values (Section 3). Then, we show how to capture this informa-
tion into our (automatically) derived random generators. More specifi-
cally, we propose a generation process that is capable of considering how
programs branch on input ADTs values as well as how they get manip-
ulated by abstract interfaces (Section 4). Furthermore, we show how to
predict the expected distribution of the ADT constructors, values fitting
certain branching patterns, and calls to interfaces that our random gen-
erators produce. For that, we extend some recent results on applying
branching processes [18]—a simple stochastic model conceived to study
population growth (Section 5). We implement our ideas as an extension
of the already existing derivation tool called DRAGEN [14]. We call our
extension as DRAGEN28 to make it easy the distinction for the reader.
DRAGEN2 is capable of automatically synthesizing QuickCheck genera-
tors which produce rich ADT values, where the distributions of random
values can be adjusted at compile-time to what developers might want.
Finally, we provide empirical evaluations showing that including static

8DRAGEN2 is available at http://github.com/OctopiChalmers/
dragen2

http://github.com/OctopiChalmers/dragen2
http://github.com/OctopiChalmers/dragen2
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information from the user codebase improves the code coverage of two
external applications when tested using random values generated fol-
lowing our ideas (Section 6).

We remark that, although this work focuses on Haskell algebraic data
types, this technique is general enough to be applied to most program-
ming languages.

2 Background
In this section, we briefly introduce the common approach for automati-
cally deriving random data generators for ADTs in QuickCheck. To ex-
emplify this, and for illustrative purposes, let us consider the following
ADT definition to encode simple Html pages:

data Html =
Text String
| Single String
| Tag String Html
| Join Html Html

The type Html allows to build pages via four possible constructions:
Text—which represents plain text values—, Single and Tag—which rep-
resent singular and paired HTML tags, respectively—, and Join—which
concatenates two HTML pages one after another. In Haskell, Text , Single ,
Tag , and Join are known as data constructors (or constructors for short)
and are used to distinguish which variant of the ADT we are construct-
ing. Each data constructor is defined as a product of zero or more types
known as fields. For instance, Text has a field of type String , whereas
Join has two recursive fields of type Html . In general, we will say that a
data constructor with no recursive fields is terminal, and non-terminal or
recursive if it has at least one field of such nature. With this representation,
the example page <html>hello<hr>bye</html> can be encoded as:

Tag "html"
(Join (Text "hello")
(Join (Single "hr")

(Text "bye")))

2.1 Type-driven generation of random values

In order to generate random ADTs values, most approaches require users
to provide a random data generator for each ADT definition. This is a
cumbersome and error prone task that usually follows closely the struc-
ture of the ADTs. For instance, consider the following definition of a
QuickCheck random generator for the type Html :

genHtml = sized (λsize →
if size ≡ 0
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then frequency
[ (2 ,Text 〈$〉 genString)
, (1 ,Single 〈$〉 genString)]
else frequency
[ (2 ,Text 〈$〉 genString)
, (1 ,Single 〈$〉 genString)
, (4 ,Tag 〈$〉 genString 〈?〉 smaller genHtml)
, (3 , Join 〈$〉 smaller genHtml 〈?〉 smaller genHtml)])

We use the Haskell syntax [ ] and (, ) for denoting lists and pairs of ele-
ments, respectively (e.g., [(1 , 2 ), (3 , 4 )] is a list of pairs of numbers.) The
random generator genHtml is defined using QuickCheck’s function sized
to parameterize the generation process up to an external natural num-
ber known as the generation size—captured in the code with variable size .
This parameter is chosen by the user, and it is used to limit the maximum
amount of recursive calls that this random generator can perform and
thus ensuring the termination of the generation process. When called
with a positive generation size, this generator can pick to generate among
any Html data constructor with an explicitly generation frequency that can
be chosen by the user—in this example, 2, 1, 4 and 3 for Text , Single , Tag ,
and Join , respectively. When it picks to generate a Text or a Single data
constructor, it also generates a random String value using the standard
QuickCheck generator genString . 9 On the other hand, when it picks to
generate a Join constructor, it also generates two independent random
sub-expressions recursively, decreasing the generation size by a unit on
each recursive invocation (smaller genHtml ). The case of random genera-
tion of Tag constructors follows analogously. This random process keeps
calling itself recursively until the generation size reaches zero, where the
generator is constrained to pick among terminal data constructors, being
Text and Single the only possible choices in our particular case.

The previous definition is rather mechanical, except perhaps for the
chosen generation frequencies. DRAGEN [14] is a tool conceived to miti-
gate the problem of finding the appropriated generation frequencies. It
uses the theory of branching processes [18] to model and predict ana-
lytically the expected number of generated data constructors. This pre-
diction mechanism is used to feedback a simulation-based optimization
process that adjusts the generation frequency of each data constructor in
order to obtain a particular distribution of values that can be specified
by the user—thus providing a flexible testing environment while still be-
ing mostly automated.

As many other tools for automatic derivation of generators (e.g., [5,
8, 15, 17]), DRAGEN synthesizes random generators similar to the one

9The operators 〈$〉 and 〈?〉 are used in Haskell to combine values obtained
from calling random generators and they are not particularly relevant for the
point being made in this work.
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shown before, where the generation process is limited to pick a single
data constructor at the time and then recursively generate each required sub-
expression independently. In practice, this procedure is often too generic to
generate random data with enough structural complexity required for
testing certain applications.

3 Sources of Structural Information
In this section, we describe the motivation for considering two additional
sources of structural information which lead us to obtain better random
data generators. We proceed to exemplify the need to consider such
sources with examples.

3.1 Branching on input data

To exemplify the first source of structural information, consider that we
want to use randomly generated Html values to test a function simplify ::
Html → Html . In Haskell, the notation f :: T means that program f
has type T . In our example, function simplify takes an Html as an input
and produces an Html value as an output—thus its type Html → Html .
Intuitively, the purpose of this function is to assemble sequences of Text
constructors into a single big one. More specifically, the code of simplify
is as follows:

simplify :: Html → Html
simplify (Join (Text t1 ) (Text t2 )) =

Text (concat t1 t2 )
simplify (Join (Join (Text t1 ) x ) y) =

simplify (Join (Text t1 ) (simplify (Join x y)))
simplify (Join x y) =

Join (simplify x ) (simplify y)
simplify (Tag t x ) =

Tag t (simplify x )
simplify x = x

Function concat just concatenates two strings. The body of simplify is de-
scribed using pattern matching over possible kinds of Html values. Pat-
tern matching allows to define functions idiomatically by defining differ-
ent function clauses for each input pattern we are interested in. In other
words, pattern matching is a mechanism that functions have to branch
on input arguments. In the code above, we can see that simplify pat-
terns match against sequences of Text constructors combined by a Join
constructor—see first and second clauses. Generally speaking, patterns
can be defined to match specific constructors, literal values or variable
sub-expressions (like x in the last clause of simplify). Patterns can also be
nested in order to match very specific values.

Ideally, we would like to put approximately the same amount of
effort into testing each clause of the function simplify . However, each
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data constructor is generated independently by those generators auto-
matically derived by just considering ADT definitions. Observe that
the probability of generating a value satisfying a nested pattern (like
Join (Text t1 ) (Text t2 )) decreases multiplicatively with the number of
constructors we simultaneously pattern against. As an evidence of that,
in our tests, we found at the first two clauses of simplify get exercised
only approximately between 1.5% and 6% of the time when using the
state-of-the-art tools for automatically deriving QuickCheck generators
MegaDeTH [8] and DRAGEN [14]. Most of the generated values were
exercising the simplest clauses of our function, i.e, simplify (Join x y),
simplify (Tag t x ), and simplify x .

Although the previous example might seem rather simple, branching
against specific patterns of the input data is not an uncommon task. In
that light, and in order to obtain interesting test cases, it is desirable to
conceive generators able to produce random values capable of exercising
patterns with certain frequency—Section 4 shows how to do so.

3.2 Abstract interfaces

hr :: Html
hr = Single "hr"

div :: Html → Html
div x = Tag "div" x

bold :: Html → Html
bold x = Tag "b" x

Figure 1: Abstract interface of the
type Html .

A common choice when imple-
menting ADTs is to transfer the
responsibility of preserving struc-
tural invariants to the interfaces
that manipulate values of such
types. To illustrate this point, let
us consider three new primitives
responsible to handle Html data
as shown in Figure 1. These func-
tions encode additional informa-
tion about the structure of Html
values in the form of specific
HTML tags. Primitive hr repre-
sents the tag <hr> used to separate content in an HTML page. Function
div and bold place an Html value within the tags div and b in order to in-
troduce divisions and activate bold fonts, respectively. For instance, the
page <html><b>hello</b><hr>bye</html> can be encoded as:

Tag "html"
(Join (bold (Text "hello"))
(Join hr

(Text "bye")))

Observe that, instead of including a new data constructor for each
possible HTML tag in the Html definition (recall Section 2), we defined
a minimal general representation with a set of high-level primitives to
build valid Html tags. This programming pattern is often found in a va-
riety of Haskell libraries. As a consequence of this practice, generators
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module M

data Html = ...

div :: Html→ Html

bold :: Html→ Html

hr :: Html

Html generation
description

HtmlADT

HtmlPatterns

HtmlInterface

⊕

⊕

Generator

⊕

⊕

Html
test cases

simplify (...) = ...

simplify (...) = ...

Structure
specification

Generator
derivation

Random
generation

User desired
distribution

Figure 2: Deriving a generator for the ADT Html with the structural in-
formation found in module M .

derived by only looking into ADT definitions often fail to synthesize use-
ful random values, e.g., random HTML pages with valid tags. After all,
most of the valid structure of values has been encoded into the primitives
of the ADT abstract interface. When considering the generator described
in Section 2, the chances of generating a Tag value representing a com-
monly used HTML tag such as div or b are extremely low.

So far, we have introduced two scenarios where derivation approaches
based only on ADT definitions are unable to capture all the available
structural information from the user codebase. Fortunately, this informa-
tion can be automatically exploited and used to generate interesting and
more structured random values. The next section introduces a model ca-
pable of encoding structural information presented in this section into
our automatically derived random generators in a modular and flexible
way.

4 Capturing ADTs Structure
In this section, we show how to augment the automatic process of deriv-
ing random data generators with the structural information expressed
by pattern matchings and abstract interfaces. The key idea of this work
is to represent the different sources in an homogeneous way.

Figure 2 shows the workflow of our approach for the Html ADT.
Based on the codebase, the user of DRAGEN2 specifies: (i) the ADT defi-
nition to consider (noted as HtmlADT), (ii) its patterns of interest (noted
HtmlPatterns), and (iii) the primitives from abstract interfaces to involve
in the generation process (noted as HtmlInterface). Our tool then automat-
ically derives generators for each source of structural information. These
generators produce random partial ADT values in a way that it is easier
to combine them in order to create structurally richer ones. For instance,
the generator obtained from HtmlADT only generates constructors of
the ADT but leaves the generation at the recursive fields incomplete,
e.g., it generates values of the form (Text "xA2sx"), (Single "xj32da"),
(Tag "divx234jx" •) and (Join • •), where • is a placeholder denot-
ing a “yet-to-complete” value. Similarly, the generator obtained from
HtmlPatterns generates values satisfying the expected patterns where



CHAPTER 3. GENERATING RANDOM STRUCTURALLY RICH
ALGEBRAIC DATA TYPE VALUES 99

recursive fields are also left uncompleted, e.g., it generates values of
the form (Join (Text "xxa34") (Text "yxa123")) and (Join (Join
(Text "xd32sa") •) •). Finally, the generator derived from HtmlInterface
generates calls to the interface’s primitives, where each argument of type
Html is left uncompleted, e.g., (div •) and (bold •).

Observe that partial ADT values can be combined easily and the result
is still a well-formed value of type Html . For instance, if we want to
combine the following random generated ADT value (Text "xx34s"),
pattern (Join (Join (Text "xd32sa") •), and interface call (div •), we
can obtain the following well-typed Html value:

Join (Join (Text "xd32sa") (div (Text "xx34s"))

Finally, our tool puts all these three generators together into one that
combines partial ADT values into fully formed ones. Importantly, the
user can specify the desire distribution of the expected number of con-
structors, pattern matching values, and interface calls that the generator
will produce. All in all, our approach offers the following advantages
over usual derivation of random generators based only on ADT defini-
tions:

– Composability: our tool can combine different partial ADT values
arising from different structural information sources depending on
what property or sub-system becomes necessary to test using ran-
domly generated values.

– Extensibility: the developer can specify new sources of structural
information and combine them with the existing ones simply by
adding them to the existing specification of the target ADT.

– Predictability: the tool is capable of synthesizing generators with
adjustable distributions based on developers’ demands. For instance,
a uniform distribution of pattern matching values, or a distribution
where some constructors are generated twice as often as others. We
explain the prediction of distributions in the next section.

We remark that, for space reasons, we were only able to introduce
the specification of a rather simple target ADT like Html . In practice, this
reasoning can be extended to mutually recursive and parametric ADT
definitions as well.

5 Predicting Distributions
Characterizing the distribution of values of an arbitrary random genera-
tor is a hard task. It requires modeling every random choice that a gener-
ator could possibly make to generate a value. In a recent work [14], we
have shown that it is possible to analytically predict the average distri-
bution of data constructors produced by random generators automati-
cally derived considering only ADT definitions—like the one presented
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on Section 2. For this purpose, we found that random generation of ADT
values can be characterized using the theory of branching processes [18].
This probabilistic theory was originally conceived to predict the growth
and extinction of royal family trees the Victorian Era, later being applied
to a wide variety of research areas. In this work, we adapt this model
to predict the average distribution of values of random generators de-
rived considering structural information coming from functions’ pattern
matchings and abstract interfaces.

Essentially, a branching process is a special kind of Markov process
that models the evolution of a population of individuals of different kinds
across discrete time steps known as generations. Each kind of individual
is expected to produce an average number of offspring of (possibly) dif-
ferent kinds from one generation to the next one. Mista el at. [14] show
that branching processes can be adapted to predict the generation of
ADT values by simply considering each data constructor as a kind of its
own. In fact, any ADT value can be seen as a tree where each node rep-
resents a root data constructor and has its sub-expressions as sub-trees—
hence note the similarity with family trees. In this light, each tree level of
a random value can be seen as a generation of individuals in this model.

We characterize the numbers of constructors that a random generator
produces in the n-th generation as a vector Gn, a vector that groups the
number of constructors of each kind produced in that generation—in
our Html example, this vector has four components, i.e., one for each
constructor. From branching processes theory, the following equation
captures the expected distribution of constructors at the generation n,
noted E[Gn], as follows:

E[Gn]
T = E[G0]

T ·Mn (20)

Vector E[G0] represents the initial distribution of constructors that
our generator produces, which simply consists of the generation prob-
ability of each one. The interesting aspect of the prediction mechanism
is encoded in the matrix M , known as a the mean matrix of this stochas-
tic process. M is a squared matrix with as rows and columns as different
data constructors involved in the generation process. Each element Mi,j

of this matrix encodes the average number of data constructors of kind
j that gets generated in a given generation, provided that we generated
a constructor of kind i at the previous one. In this sense, this matrix en-
codes the “branching” behavior of our random generation from one gen-
eration to the next one. Each element of the matrix can be automatically
calculated by exploiting ADT definitions, as well as the individual prob-
ability of generating each constructor. For instance, the average number
of Text data constructors that we will generate provided that we gener-
ated a Join constructor on the previous level results:

MJoin,Text = 2 · pText
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where 2 is the number of holes present when generating a partial ADT
value Join (i.e., Join • •) and pText is the probability of individually
generating the constructor Text . This reasoning can be used to build the
rest of the mean matrix analogously.

5.1 Extending predictions for structural information

In this work, we show how to naturally fit structural information be-
yond ADT definitions into the prediction mechanism of branching pro-
cesses. Our realization is that it suffices to consider each different pattern
matching and function call as a kind of individual on its own. In that man-
ner, we can extend our mean matrix M adding a row and a column for
each different pattern matching and function call as shown in Figure 3.

�





C1 · · · Ci P1 · · · Pj F1 · · · Fk
C1...
Ci
P1...
Pj
F1...
Fk

Figure 3: Mean matrix M including
pattern matching and function calls
information.

SymbolC1· · ·Ci denotes construc-
tors, P1· · ·Pj pattern matchings,
and F1· · ·Fk function calls. The
light-red colored matrix is what
we had before, whereas the light-
blue colored cells are new—we en-
courage readers to obtain a col-
ored copy of this work.

The new cells are filled as
before: we need to consider the
amount of holes when generat-
ing partial pattern matching val-
ues and function calls as well
as their individual probabilities.
For instance, if we consider Pj
as the second pattern of function
simplify and F1 as function div ,
then the marked cell above has the value 2 · pdiv , i.e., the amount of holes
in the partially generated pattern (Join (Join (Text s) •) •), where s is
some random string, times the probability to generate a call to function
div . The rest of this matrix can be computed analogously.

As another contribution, we found that the whole prediction process
can be factored in terms of two vectors β and P , such that β represents
the number of holes in each partial ADT value that we generate, whereas
P simply represents the probability of generating that partial ADT value.
Then, the equation (20) can be rewritten as:

E[Gn]
T = βT · (β · PT )n

For instance, β and P for our generation specification of HTML values
are as shown in Figure 4. We note simplify#1 and simplify#2 to the
patterns occurring in the first and second clauses of simplify , respectively.

Note that by varying the shape of the vector P we can tune the distri-
bution of our random generator in a way that can be always character-
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pdiv
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Figure 4: Prediction vectors of our Html generation specification.

ized and predicted. DRAGEN2 follows a similar approach as DRAGEN
and uses an heuristic to tune the generation probabilities of each source
of structural information. This is done by running a simulation-based op-
timization process at compile-time. This process is parameterized by the
desired distribution of values set by the user. In this manner, developers
can specify, for instance, a uniform distribution of data constructors, pat-
tern matching values and function calls or, alternatively, a distribution
of values with some constructions appearing in a different proportion as
others, e.g., two times more functions calls to div than Join constructors.

5.2 Overall prediction
It is possible to provide an overall prediction of the expected number of
constructors when restricting the generation process to only bare data
constructors and pattern matching values. To achieve that, we should
stop considering pattern matching values as atomic constructions and
start seeing them as compositions of several data constructors. In that
manner, it is possible to obtain the expected total number of generated
data constructors that our generators will produce—regardless if they
are generated on their own, or as part of a pattern matching value. We
note this number as E↓[_] and, to calculate it, we only need to add the
expected number of bare constructors that are included within each pat-
tern matching. For instance, we can calculate the total expected number
of constructors Text and Join that we will generate by simply expanding
the expected number of generated pattern matching values simplify#1
and simplify#2 into their corresponding data constructors:

E↓[Text ]= E [Text ] + 2 · E[simplify#1 ] + 1 · E[simplify#2 ]

E↓[Join]= E [Join] + 1 · E[simplify#1 ] + 2 · E[simplify#2 ]

Observe that each time we generate a value satisfying the first pattern
matching of the function simplify , we add two Text and one Join data
constructors to our random value. The case of the second pattern match-
ing of simplify follows analogously. Note that the overall prediction can-
not be applied if we also generate random values containing function
calls, as we cannot predict the output of an arbitrary function.
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6 Case Studies
This section describes two case studies showing that considering addi-
tional structural information when deriving generators can consistently
produce better testing results in terms of code coverage. Instead of re-
stricting our scope to Haskell, in this work we follow a broader evalua-
tion approach taken previously to compare state-of-the-art techniques to
derive random data generators based on ADT definitions [9, 14].

We evaluate how including additional structural information when
generating a set of random test cases (often referred as a corpus) affects
the code coverage obtained when testing a given target program. For
that, we considered two external programs which expect highly struc-
tured inputs, namely GNU CLISP 10—the GNU Common Lisp compiler,
and HTML Tidy 11—a well known HTML refactoring and correction util-
ity. We remark that these applications are not written in Haskell. How-
ever, there exist Haskell libraries defining ADTs encoding their input
structure, i.e., Lisp and HTML values respectively. These libraries are:
hs-zuramaru12, implementing an embedded Lisp interpreter for a small
subset of this programming language, and html13, defining a combinator
library for constructing HTML values. These libraries also come with se-
rialization functions to map Haskell values into corresponding test case
files.

We firstly compiled instrumented versions of the target programs in
a way that they also return the execution path followed in the source
code every time we run them with a given input test case. This let us dis-
tinguish the amount of different execution paths that a randomly gener-
ated corpus can trigger. We then used the ADTs defined on the chosen
libraries to derive random generators using DRAGEN and DRAGEN2,
including structural information extracted from the library’s codebase
in the case of the latter. Then, we proceeded to evaluate the code cover-
age triggered by independent, randomly generated corpora of different
sizes varying from 100 to 1000 test cases each. In order to remove any ex-
ternal bias, we derived generators optimized to follow a uniform distribu-
tion of constructors (and pattern matchings or function calls in the case DRA-
GEN2), and carefully adjusted their generation sizes to match the average test
case size in bytes. This way, any noticeable difference in the code coverage
can be attributed to the presence (or lack thereof) structural information
when generating the test cases. Additionally, to achieve statistical signif-
icance we repeated each experiment 30 times with independently gener-
ated sets of random test cases.

10https://www.gnu.org/software/gcl/
11http://www.html-tidy.org
12http://hackage.haskell.org/package/zuramaru
13http://hackage.haskell.org/package/html

https://www.gnu.org/software/gcl/
http://www.html-tidy.org
http://hackage.haskell.org/package/zuramaru
http://hackage.haskell.org/package/html
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Figure 5: Path coverage comparison between DRAGEN ( ) and DRA-
GEN2 ( ).

Figure 5 illustrates the mean number of different execution paths
triggered for different combinations of corpus size and derivation tool,
including error bars indicating the standard error of the mean on each
case. We proceed to describe each case study and our findings in detail
as follows.

6.1 Branching on input data

In this first case study we wanted to evaluate the observed code cover-
age differences when considering structural information present on func-
tions pattern matchings.

Our chosen library encodes Lisp S-expressions essentially as lists of
symbols, represented as plain strings; and literal values like booleans
or integers. In order to interpret Lisp programs, this unified representa-
tion of data and code requires this library to pattern match against com-
mon patterns like let-bindings, if-then-else expressions and arithmetic
operators among others. In particular, each one of these patterns match a
against special symbol of the Lisp syntax like "let", "if" or "+"; and
their corresponding sub-expressions. We extracted this structural infor-
mation and included it into the generation specification of our random
Lisp values—which were generated by randomly picking from a total of
6 data constructors and 8 different pattern matchings. By doing this, we
obtained a code coverage improvement of approximately 4% using DRA-
GEN2 with respect to the one obtained with DRAGEN (see Figure 5 (a)).
While it seems an small improvement, we argue that an improvement of
4% is not negligible considering (a) the little effort that took us to specify
the pattern matchings and (b) that we are testing a full-fledged compiler.



CHAPTER 3. GENERATING RANDOM STRUCTURALLY RICH
ALGEBRAIC DATA TYPE VALUES 105

6.2 Abstract interfaces

For our second case study, we wanted to evaluate how including struc-
tural information coming from abstract interfaces when generating ran-
dom HTML values might improve the testing performance.

The library we used for this purpose represents HTML values very
much in the same way as we exemplify in Section 2, i.e., defining a small
set of general constructions representing plain text and tags—although
this library also supports HTML tag attributes as well. Then, this repre-
sentation is extended with a large abstract interface consisting of combi-
nators representing common HTML tags and tag attributes—equivalent
to the combinators div , bold and hr illustrated in Section 3.

In this case study we included the structural information present on
the abstract interface of this library into the generation specification of
random HTML values, resulting in a generation process that randomly
picked among 4 data constructors and 163 abstract functions. With this
large amount of additional structural information, we observed an in-
crease of up to 83% in the code coverage obtained with DRAGEN2 with
respect to the one observed with DRAGEN (see Figure 5 (b)). A manual
inspection of the corpora generated with each tool revealed us that, in
general terms, the test cases generated with DRAGEN rarely represent
syntactically correct HTML values, consisting to a large extent of random
strings within and between HTML tag delimiters ("<", ">" and "/>").
On the other hand, test cases generated with DRAGEN2 encode much
more interesting structural information, being mostly syntactically cor-
rect. We found that, in many cases, the test cases generated with DRA-
GEN2 were parsed, analyzed and reported as valid HTML values by the
target application.

With these results we are confident that including the structural in-
formation present on the user codebase improves the overall testing per-
formance.

7 Related Work
Boltzmann models [4] are a general approach to randomly generating
combinatorial structures such as trees and graphs, closed simply-typed
lambda terms, etc. A random generator built around such models uni-
formly generates values of a target size with a certain size tolerance.
However, it has been argued that this approach has theoretical and prac-
tical limitations in the context of software testing [6]. In a recent work,
Bendkowski et al. provides a framework called boltzmann-brain to specify
and synthesize standalone Haskell random generators based on Boltz-
mann models [2]. This framework mixes parameter tuning and rejection
of samples of unwanted sizes to approximate the desired distribution
of values according to user demands. The overall discard ratio then de-
pends on how constrained the desired sizes of values are. On the other
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hand, our work is focused on approximating the desired distribution as
much as possible via parameter optimization, without discarding any
generated value at runtime. Although promising, we found difficulties
to compare both approaches in practice due that boltzmann-brain is con-
sidered a conceptual standalone utility that produces self-contained sam-
plers. In this light, data specifications have to be manually written using
a special syntax, and cannot include Haskell ground types like String or
Int , difficulting the integration of this tool to existing Haskell codebases
like the ones we consider in this work.

From the practical point of view, Feldt and Poulding propose Gödel-
Test [6], a search-based framework for generating biased data. Similar
to our approach, GödelTest works by optimizing the parameters govern-
ing the desired biases on the generated data. However, the optimization
mechanism uses meta-heuristic search to find the best parameters at run-
time. DRAGEN2 on the other hand implements an analytic and compos-
able prediction mechanism that is only used at compile time to optimize
the generation parameters, thus avoiding performing any kind of run-
time reinforcement.

Directed Automated Random Testing (DART) is a technique that com-
bines random testing with symbolic execution for C programs [7]. It re-
quires instrumenting the target programs in order to introduce testing
assertions and obtain feedback from previous testing executions, which
is used to explore new paths in the source code. This technique has been
shown to be remarkably useful, although it forces a strong coupling be-
tween the testing suite and the target code. Our tool intends to provide
better random generation of values following an undirected fashion,
without having to instrument the target code, but still extracting useful
structural information from it.

8 Final Remarks
We extended the standard approach for automatically deriving random
generators in Haskell. Our generators are capable of producing complex
and interesting random values by exploiting static structural informa-
tion found in the user codebase. Based on the theory of branching pro-
cesses, we adapt our previous prediction mechanism to characterize the
distribution of random values representing the different sources of struc-
tural information that our generators might produce. This predictions
let us optimize the generation parameters in compile time, resulting in
an improved testing performance according to our experiments.
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ABSTRACT

Automatic generation of random values described by algebraic data
types (ADTs) is often a hard task. State-of-the-art random testing tools
can automatically synthesize random data generators based on ADTs
definitions. In that manner, generated values comply with the structure
described by ADTs, something that proves useful when testing software
which expects complex inputs. However, it sometimes becomes neces-
sary to generate structural richer ADTs values in order to test deeper soft-
ware layers. In this work we propose to leverage static information found
in the codebase as a manner to improve the generation process. Namely,
our generators are capable of considering how programs branch on input
data as well as how ADTs values are built via interfaces. We implement a
tool, responsible for synthesizing generators for ADTs values while pro-
viding compile-time guarantees about their distributions. Using compile-
time predictions, we provide a heuristic that tries to adjust the distribu-
tion of generators to what developers might want. We report on prelimi-
nary experiments where our approach shows encouraging results.
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1 Introduction

Random property-based testing is a powerful technique for finding bugs
[1, 10, 11, 16]. In Haskell, QuickCheck is the predominant tool for this
task [2]. The developers specify (i) the testing properties their systems
must fulfill, and (ii) random data generators (or generators for short) for
the data types involved at their properties. Then, QuickCheck generates
random values, and uses them to evaluate the testing properties in search
of possible counterexamples, which always indicate the presence of bugs,
either in the program or in the specification of our properties.

Although QuickCheck provides default generators for the common
base types, like Int or String , it requires implementing generators for any
user-defined data type we want to generate. This process is cumbersome
and error prone, and commonly follows closely the shape of our data
types. Fortunately, there exists a variety of tools helping with this task,
providing different levels of invariants on the generated values as well
as automation [6, 8, 14, 18]. We divide the different approaches in two
kinds: those which are manual, where generators are often able to enforce
a wide-range of invariants on the generated data, and those which are
automatic where the generators can only guarantee lightweight invariants
like generating well-typed values.

On the manual side, Luck [14] is a domain-specific language for man-
ually writing testing properties and random generators in tandem. It al-
lows obtaining generators specialized to produce random data which is
proven to satisfy the preconditions of their corresponding properties. In
contrast, on the automatic side, tools like MegaDeTH [8,9], DRAGEN [18]
and Feat [6] allow obtaining random generators automatically at com-
pile time. MegaDeTH and DRAGEN derive random generators follow-
ing a simple recipe: to generate a value, they simply pick a random data
constructor from our data type with a given probability, and proceed to
generate the required sub-terms recursively. MegaDeTH pays no atten-
tion to the generation frequencies, nor the distribution induced by the
derived generator—it just picks among data constructors with uniform
probability. Differently, DRAGEN analyzes type definitions, and tunes
the generation frequencies to match the desired distribution of random
values specified by developers. Finally, Feat relies on functional enumer-
ations, deriving random generators which sample random values uni-
formly across the whole search space of values of up to a given size of
the data type under consideration. In this work, we focus on automatic
approaches to derive generators.

While MegaDeTH, DRAGEN, and Feat provide a useful mechanism
for automating the task of writing random generators by hand, they im-
plement a derivation procedure which is often too generic to synthe-
size useful generators in common scenarios, mostly because they only
consider the structural information encoded in type definitions. To illustrate
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this point, consider the following type definition encoding basic HTML
pages—inspired by the widely used html package:14

data Html =
Text String
| Sing String
| Tag String Html
| Html :+: Html

This type allows building HTML pages via four possible data con-
structors: Text is used for plain text values; Sing and Tag represent sin-
gular and paired HTML tags, respectively; whereas the infix (:+:) con-
structor simply concatenates two HTML pages one after another. Note
that the constructors Tag and (:+:) are recursive, as they have at least
one field of type Html . Then, the example page:

<html>hi<br><b>bye</b></html>

can be encoded with the following Html value:

Tag "html" (Text "hi" :+: Sing "br" :+: Tag "b" (Text "bye"))

In this work, we focus on two scenarios where deriving generators
following only the information extracted from type definitions does not
work well. The first case is when type definitions are too general (like
the case of Html ) where, as consequence, the generation process leaves
a large room for ill-formed values, e.g., invalid HTML pages. For in-
stance, when generating an Html value using the Sing constructor, it is
very likely that an automatically derived generator will choose a ran-
dom string not corresponding to any valid HTML singular tag. In such
situations, a common practice is to rely on existing abstract interfaces to
generate random values—such interfaces are often designed to preserve
our desired invariants. As an example, consider that our Html data type
comes equipped with the following abstract interface:

br :: Html
bold :: Html → Html
list :: [Html ]→ Html
(〈+〉) :: Html → Html → Html

These high-level combinators let us represent structured HTML construc-
tions like line breaks (br ), bold blocks (bold ), unordered lists (list) and
concatenation of values one below another (〈+〉). This methodology of
generating random data employing high-level combinators has shown
to be particularly useful in the presence of monadic code [3, 9].

14http://hackage.haskell.org/package/html

http://hackage.haskell.org/package/html
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The second scenario that we consider is that where derived genera-
tors fails at producing very specific patterns of values which might be
needed to trigger bugs. For instance, a function for simplifying Html val-
ues might be defined to branch differently over complex sequences of
Text and (:+:) constructors:

simplify :: Html → Html
simplify (Text t1 :+: Text t2 ) = · · ·
simplify (Text t :+: x :+: y) = · · ·
simplify · · · = · · ·

(Symbol · · · denotes code that is not relevant for the point being made.)
Generating values that match, for instance, the pattern Text t :+: x :+: y
using DRAGEN under a uniform distribution will only occur 6% of the
time! Clearly, these input pattern matchings should also be included
into our generators, allowing them to produce random values satisfying
such inputs. This structural information can help increase the chances of
reaching portions of our code which otherwise would be very difficult to
test. Functions pattern matchings often expose interesting relationships
between multiple data constructors, a valuable asset for testing complex
systems expecting highly structured inputs [13].

Our previous work [17] focuses on extending DRAGEN’s generators
as well as its predictive approach to include all these extra sources of
structural information, namely high-level combinators and functions’ in-
put patterns, while allowing tuning the generation parameters based
on the developers’ demands. In turn, this work focuses on an orthogo-
nal problem: that of modularity. In essence, all the automatic tools cited
above work by synthesizing rigid monolithic generator definitions. Once
derived, these generators have almost no parameters available for ad-
justing the shape of our random data. Sadly, this is something we might
want to do if we need to test different properties or sub-systems using
random values generated in slightly different ways. As the reader might
appreciate, it can become handy to cherry pick, for each situation, which
data constructors, abstract interfaces functions, or functions’ input pat-
terns to consider when generating random values.

The contribution of this work is an automated framework for syn-
thesizing compositional random generators, which can be naturally ex-
tended to include the extra sources of structural information mentioned
above. Using our approach, a user can obtain random generators follow-
ing different generation specifications whenever necessary, all of them built
upon the same underlying machinery which only needs to be derived
once.

Figure 1 illustrates a possible usage scenario of our approach. We first
invoke a derivation procedure (1a) to extract the structural information
of the type Html encoded on (i) its data constructors, (ii) its abstract inter-
face, and (iii) the patterns from the function simplify . Then, two different
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derive [
constructors ′′Html ,
interface ′′Html ,
patterns ′simplify

]

(a) Machinery derivation

type Htmlvalid =
Con "Text" ⊗ 2

⊕ Con ":+:" ⊗ 4
⊕ Fun "hr" ⊗ 3
⊕ Fun "bold" ⊗ 2
⊕ Fun "list" ⊗ 3
⊕ Fun "<+>" ⊗ 5

type Htmlsimplify =
Con "Text" ⊗ 2

⊕ Con "Sing" ⊗ 1
⊕ Con "Tag" ⊗ 3
⊕ Con ":+:" ⊗ 4
⊕ Pat "simplify" 1 ⊗ 3
⊕ Pat "simplify" 2 ⊗ 5

genHtmlvalid = genRep @Htmlvalid
genHtmlsimplify = genRep @Htmlsimplify

(b) Generators specification

Figure 1: Usage example of our framework. Two random generators ob-
tained from the same underlying machinery.

generation specifications, namely Htmlvalid and Htmlsimplify can be de-
fined using a simple type-level idiom (1b). Each specification mentions
the different sources of structural information to consider, along with
(perhaps) their respective generation frequency. Intuitively, Htmlvalid
chooses among the constructors Text and :+: , as well as functions from
Html ’s abstract interface; while Htmlsimplify chooses among all Html ’s
constructors and the patterns of the first and second clauses in the func-
tion simplify . The syntax used there will be addressed in detail in Sections
3 to 5. Finally, we obtain two concrete random generators following such
specifications by writing genRep @Htmlvalid and genRep @Htmlsimplify ,
respectively.

The main contribution of this paper are:

– We present an extensible mechanism for representing random values
built upon different sources of structural information, adopting ideas
from Data Types à la Carte [24] (Section 3).

– We develop a modular generation scheme, extending our representa-
tion to encode information relevant to the generation process at the
type level (Section 4).
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– We propose a simple type-level idiom for describing extensible gen-
erators, based on the types used to represent the desired shape of
our random data (Section 5).

– We provide a Template Haskell tool15 for automatically deriving all
the required machinery presented throughout this paper, and eval-
uate its generation performance with three real-world case studies
and a type-level runtime optimization (Section 6).

Overall, we present a novel technique for reusing automatically derived
generators in a composable fashion, in contrast to the usual paradigm of
synthesizing rigid, monolithic generators.

2 Random Generators in Haskell
In this section, we introduce the common approach for writing random
generators in Haskell using QuickCheck, along with the motivation for
including extra information into our generators, discussing how this
could be naively implemented in practice.

In order to provide a common interface for writing generators, QuickCheck
uses Haskell’s overloading mechanism known as type classes [25], defin-
ing the Arbitrary class for random generators as:

class Arbitrary a where
arbitrary :: Gen a

where the overloaded symbol arbitrary :: Gen a denotes a monadic gen-
erator for values of type a . Using this mechanism, a user can define a
sensible random generator for our Html data type as follows:

instance Arbitrary Html where
arbitrary = sized gen
where

gen 0 = frequency
[ (2 ,Text 〈$〉 arbitrary)
, (1 ,Sing 〈$〉 arbitrary)]

gen d = frequency
[ (2 ,Text 〈$〉 arbitrary)
, (1 ,Sing 〈$〉 arbitrary)
, (4 ,Tag 〈$〉 arbitrary 〈?〉 gen (d−1 ))
, (3 , (:+:) 〈$〉 gen (d−1 ) 〈?〉 gen (d−1 ))]

At the top level, this definition parameterizes the generation process us-
ing QuickCheck’s sized combinator, which lets us build our generator via
an auxiliary, locally defined function gen :: Int → Gen Html . The Int
passed to gen is known as the generation size, and is threaded seamlessly

15Available at https://github.com/OctopiChalmers/dragen2

https://github.com/OctopiChalmers/dragen2
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by QuickCheck on each call to arbitrary . We use this parameter to limit
the maximum amount of recursive calls that our generator can perform,
and thus the maximum depth of the generated values. If the generation
size is positive (case gen d ), our generator picks a random Html construc-
tor with a given generation frequency (denoted here by the arbitrarily
chosen numbers 2 , 1 , 4 and 3 ) using QuickCheck’s frequency combina-
tor. Then, our generator proceeds to fill its fields using randomly gener-
ated sub-terms—here using Haskell’s applicative notation [15] and the
default Arbitrary instance for Strings. For the case of the recursive sub-
terms, this generator simply calls the function gen recursively with a
smaller depth limit (gen (d−1 )). This process repeats until we reach the
base case (gen 0 ) on each recursive sub-term. At this point, our genera-
tor is limited to pick only among terminal Html constructors, hence end-
ing the generation process.

As one can observe, the previous definition is quite mechanical, and
depends only on the generation frequencies we choose for each con-
structor. This simple generation procedure is the one used by tools like
MegaDeTH or DRAGEN when synthesizing generators.

2.1 Abstract Interfaces

A common choice when implementing abstract data types is to trans-
fer the responsibility of preserving their invariants to the functions on
their abstract interface. Take for example our Html data type. Instead
of defining a different constructor for each possible HTML construction,
we opted for a small generic representation that can be extended with a
set of high-level combinators:

br :: Html
br = Sing "br"

bold :: Html → Html
bold = Tag "b"

list :: [Html ]→ Html
list [ ] = Text "empty list"
list xs = Tag "ul" (foldl1 (:+:) (Tag "li" 〈$〉 xs))

(〈+〉) :: Html → Html → Html
(〈+〉) x y = x :+: br :+: y

Note how difficult it would be to generate random values containing, for
example, structurally valid HTML lists, if we only consider the structural
information encoded in our Html type definition. After all, much of the
valid structure of HTML has been encoded on its abstract interface.

A synthesized generator could easily contemplate this structural in-
formation by creating random values arising from applying such func-
tions to randomly generated inputs:
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instance Arbitrary Html where
arbitrary = · · ·

frequency
[...
, (1 , pure br)
, (5 , bold 〈$〉 gen (d−1 ))
, (2 , list 〈$〉 listOf (gen (d−1 )))
, (3 , (〈+〉) 〈$〉 gen (d−1 ) 〈?〉 gen (d−1 ))]

where (...) represents the rest of the code of the random generator intro-
duced before. From now on, we will refer to each choice given to the
frequency combinator as a different random construction, since we are not
considering generating only single data constructors anymore, but more
general value fragments.

2.2 Functions’ Pattern Matchings

A different challenge appears when we try to test functions involving
complex pattern matchings. Consider, for instance, the full definition of
the function simplify introduced in Section 1:

simplify :: Html → Html
simplify (Text t1 :+: Text t2 ) = Text (t1 ++ t2 )
simplify (Text t :+: x :+: y) =

simplify (Text t :+: simplify (x :+: y))
simplify (x :+: y) = simplify x :+: simplify y
simplify (Tag t x ) = Tag t (simplify x )
simplify x = x

This function traverses Html values, joining together every contiguous
pair of Text constructors. Ideally, we would like to put approximately
the same testing effort into each clause of simplify , or perhaps even more
to the first two ones, since those are the ones performing actual simplifi-
cations. However, these two clauses are the most difficult ones to test in
practice! The probability of generating a random value satisfying nested
patterns decreases multiplicatively with the number of constructors we
simultaneously pattern match against. In our tests, we were not able to
exercise any of these two patterns more than 6% of the overall testing
time, using random generators derived using both MegaDeTH and DRA-
GEN. As expected, most of the random test cases were exercising the sim-
plest (and rather uninteresting) patterns of this function.

To solve this issue, we could opt to consider each complex pattern as
a new kind of random construction. In this light, we can simply generate
values satisfying patterns directly by returning their corresponding ex-
pressions, where each variable or wildcard pattern is filled using a ran-
dom sub-expression:
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instance Arbitrary Html where
arbitrary = · · ·

frequency
[ ...
, (2 ,do t1 ← arbitrary

t2 ← arbitrary
return (Text t1 :+: Text t2 ))

, (4 ,do t ← arbitrary
x ← gen (d−1 )
y ← gen (d−1 );
return (Text t :+: x :+: y))]

While the ideas presented in this section are plausible, accumulating
cruft from different sources of structural information into a single, global
Arbitrary instance is unwieldy, especially if we consider that some ran-
dom constructions might not be relevant or desired in many cases, e.g.,
generating the patterns of the function simplify might only be useful
when testing properties involving such function, and nowhere else.

In contrast, the following sections of this paper present our extensi-
ble approach for deriving generators, where the required machinery is
derived once, and each variant of our random generators is expressed
on a per-case basis.

3 Modular Random Constructions
This section introduces a unified representation for the different construc-
tions we might want to consider when generating random values. The
key idea of this work is to lift each different source of structural informa-
tion to the type level. In this light, the shape of our random data is deter-
mined entirely by the types we use to represent it during the generation
process.

For this purpose, we will use a set of simple “open” representation
types, each one encoding a single random construction from our target
data type, i.e., the actual data type we want to randomly generate. These
types can be (i) combined in several ways depending on the desired
shape of our test data (applying the familiar à la Carte technique); (ii) ran-
domly generated (see Section 4); and finally, (iii) transformed to the cor-
responding values of our target data type automatically. This representa-
tion can be automatically derived from our source code at compile time,
relieving programmers of the burden of manually implementing the re-
quired machinery.

3.1 Representing Data Constructors

When generating values of algebraic data types, the simplest piece of
meaningful information we ought to consider is the one given by each
one of its constructors. In this light, each constructor of our target type
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can be represented using a single-constructor data type. Recalling our
Html example, its constructors can be represented as:

data ConText r = MkText String
data ConSing r = MkSing String
data ConTag r = MkTag String r
data Con(:+:) r = Mk(:+:) r r

Each representation type has the same fields as its corresponding con-
structor, except for the recursive ones which are abstracted away using a
type parameter r . This parametricity lets us leave the type of recursive
sub-terms unspecified until we have decided the final shape of our ran-
dom data. Then, for instance, the value MkTag "div" x :: ConTag r rep-
resents the Html value Tag "div" x , for some sub-term x :: r that can
be transformed to Html as well. Note how these representations types
encode the minimum amount of information they need, leaving every-
thing else unspecified.

An important property of these parametric representations is that, in
most cases, they form a functor over its type parameter, thus we can use
Haskell’s deriving mechanism to obtain suitable Functor instances for
free—this will be useful for the next steps.

The next building block of our approach consists of providing a map-
ping from each constructor representation to its corresponding target
value, provided that each recursive sub-term has already been translated
to its corresponding target value. This notion is often referred as an F-
Algebra over the functor used to represent each different construction. Ac-
cordingly, to represent this mapping, we will define a type class Algebra
with a single method alg as follows:

class Functor f ⇒ Algebra f a | f → a where
alg :: f a → a

where f is the functor type used to represent a construction of the target
type a . The functional dependency f → a helps the type system to solve
type of the type variable a , which appears free on the right hand side
of the ⇒. This means that, every representation type f will uniquely
determine its target type a . Then, we need to instantiate this type class
for each data constructor representation we are considering, providing
an appropriate implementation for the overloaded alg function:

instance Algebra ConText Html where
alg (MkText x ) = Text x

instance Algebra ConSing Html where
alg (MkSing x ) = Sing x

instance Algebra ConTag Html where
alg (MkTag t x ) = Tag t x
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instance Algebra Con(:+:) Html where
alg (Mk(:+:) x y) = x :+: y

There, we simply transform each constructor representation into its cor-
responding data constructor, piping its fields unchanged.

3.2 Composing Representations

So far we have seen how to represent each data constructor of our Html
data type independently. In order to represent interesting values, we
need to be able to combine single representations into (possibly complex)
composite ones. For this purpose, we will define a functor type ⊕ to
encode the choice between two given representations:

data ((f :: ∗ → ∗)⊕ (g :: ∗ → ∗)) r = InL (f r) | InR (g r)

This infix type-level operator lets us combine two representations f and
g into a composite one f ⊕ g , encoding either a value drawn from f (via
the InL constructor) or a value drawn from g (via the InR constructor).
This operator works pretty much in the same way as Haskell’s Either
data type, except that, instead of combining two base types, it works
combining two parametric type constructors, hence the kind signature ∗ →
∗ in both f and g . For instance, the type ConText⊕ConTag encodes values
representing either plain text HTMLs or paired tags. Such values can be
constructed using the injections InL and InR on each case, respectively.

The next step consists of providing a mapping from composite repre-
sentations to target types, provided that each component of can be trans-
lated to the same target type:

instance (Algebra f a,Algebra g a)⇒ Algebra (f ⊕ g) a where
alg (InL fa) = alg fa
alg (InR ga) = alg ga

There, we use the appropriate Algebra instance of the inner representa-
tion, based on the injection used to create the composite value.

Worth remarking, the order in which we associate each operand of ⊕
results semantically irrelevant. However, in practice, associativity takes
a dramatic role when it comes to generation speed. This phenomenon is
addressed in detail in Section 6.

3.3 Tying the Knot

Even though we have already seen how to encode single and composite
representations for our target data types, there is a piece of machinery
still missing: our representations are not recursive, but parametric on
its recursive fields. We can think of them as a encoding a single layer
of our target data. In order to represent recursive values, we need to
close them tying the knot recursively, i.e., once we have fixed a suitable
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representation type for our target data, each one of its recursive fields
has to be instantiated with itself. This can be easily achieved by using a
type-level fixed point operator:

data Fix (f :: ∗ → ∗) = Fix {unFix :: f (Fix f )}

Given a representation type f of kind ∗ → ∗, the type Fix f instantiates
each recursive field of f with Fix f , closing the definition of f into itself—
thus the kind of Fix f results ∗.

In general, if a type f is used to represent a given target type, we will
refer to Fix f as a final representation, since it cannot be further combined
or extended—the ⊕ operator has to be applied within the Fix type con-
structor.

The effect of a fixed point combinator is easier to interpret with an
example. Let us imagine we want to represent our Html data type using
all of its data constructors, employing the following type:

type Html ′ = ConText ⊕ConSing ⊕ConTag ⊕Con(:+:)

Then, for instance, the value x = Text "hi" :+: Sing "hr" :: Html can
be represented with a value x ′ :: Fix Html ′ as:

x ′ = Fix (InR (InR (InR (Mk(:+:)

(Fix (InL (MkText "hi")))
(Fix (InR (InL (MkSing "hr"))))))))

where the sequences of InL and InR data constructors inject each value
from an individual representation into the appropriate position of our
composite representation Html ′.

Finally, we can define a generic function eval to evaluate any value
of a final representation type Fix f into its corresponding value of the
target type a as follows:

eval :: Algebra f a ⇒ Fix f → a
eval = alg ◦ fmap eval ◦ unFix

This function exploits the Functor structure of our representations, un-
wrapping the fixed points and mapping their algebras to the result of
evaluating recursively each recursive sub-term.

In our particular example, this function satisfies eval x ′ ≡ x . More
specifically, the types Html and Fix Html ′ are in fact isomorphic, with
eval as the witness of one side of this isomorphism—though this is not
the case for any arbitrary representation.

3.4 Representing Additional Constructions

The representation mechanism we have developed so far lets us deter-
mine the shape of our target data based on the type we use to repre-
sent its constructors. However, it is hardly useful for random testing, as
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the values we can represent are still quite unstructured. It is not until
we start considering more complex constructions that this approach be-
comes particularly appealing.

Abstract Interfaces Let us consider the case of generating values ob-
tained by abstract interface functions. If we recall our Html example,
the functions on its abstract interface can be used to obtain Html values
based on different input arguments. Fortunately, it is easy to extend our
approach to incorporate the interesting structure arising from these func-
tions into our framework. As before, we start by defining a set of open
data types to encode each function as a random construction:

data Funbr r = Mkbr
data Funbold r = Mkbold r
data Funlist r = Mklist [r ]
data Fun〈+〉 r = Mk〈+〉 r r

Each data type represents a value resulting from evaluating its corre-
sponding function, using the values encoded on its fields as input argu-
ments. Once again, we replace each recursive field (representing a recur-
sive input argument) with a type parameter r in order to leave the type
of the recursive sub-terms unspecified until we have decided the final
shape of our data.

By representing values obtained from function application this way,
we are not performing any actual computation—we simply store the
functions’ input arguments. Instead, these functions are evaluated when
transforming each representation into its target type, by the means of an
Algebra :

instance Algebra Funbr Html where
alg Mkbr = br

instance Algebra Funbold Html where
alg (Mkbold x ) = bold x

instance Algebra Funlist Html where
alg (Mklist xs) = list xs

instance Algebra Fun〈+〉 Html where
alg (Mk〈+〉 x y) = x 〈+〉 y

Where we simply return the result of evaluating each corresponding
function, using its representation fields as an input arguments.

It is important to remark that this approach inherits any possible
downside from the functions we use to represent our target data. In
particular, representing non-terminating functions might produce a non-
terminating behavior when calling to the eval function.

Functions’ Pattern Matchings The second source of structural informa-
tion that we consider in this work is the one present in functions’ pattern
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matchings. If we recall to our simplify function, we can observe it has
two complex, non-trivial patterns that we might want to satisfy when
generating random values. We can extend our approach in order to rep-
resent these patterns as well. We start by defining data types for each
one of them, this time using the fields of each single data constructor to
encode the free pattern variables (or wildcards) appearing on its corre-
sponding pattern:

data Patsimplify#1 r = Mksimplify#1 String String
data Patsimplify#2 r = Mksimplify#2 String r r

where the number after the # distinguishes the different patterns from
the function simplify by the index of the clause they belong to. As before,
we abstract away every recursive field (corresponding to a recursive
pattern variable or wildcard) with a type variable r .

Then, the Algebra instance of each pattern will expand each repre-
sentation into the corresponding target value resembling such pattern,
where each pattern variable gets instantiated using the values stored in
its representation field:

instance Algebra Patsimplify#1 Html where
alg (Mksimplify#1 t1 t2 ) = Text t1 :+: Text t2

instance Algebra Patsimplify#2 Html where
alg (Mksimplify#1 t x y) = Text t :+: x :+: y

3.5 Lightweight Invariants for Free!

Using the machinery presented so far, we can represent values of our
target data coming from different sources of structural information in a
compositional way.

Using this simple mechanism we can obtain values exposing light-
weight invariants very easily. For instance, a value of type Html might
encode invalid HTML pages if we construct them using invalid tags in
the process (via the Sing or Tag constructors). To avoid this, we can ex-
plicitly disallow the direct use of the Sing and Tag constructors, replac-
ing them with safe constructions from its abstract interface. In this light,
a value of type:

ConText ⊕ Con(:+:) ⊕ Funbr ⊕ Funbold ⊕ Funlist ⊕ Fun〈+〉

always represents a valid HTML page.
Similarly, we can enforce that every Text constructor within a value

will always appear in pairs of two, by using the following type:

ConSing ⊕ ConTag ⊕ Con(:+:) ⊕ Patsimplify#1
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Since the only way to place a Text constructor within a value of this
type is via the construction Patsimplify#1 , which always contains two
consecutive Texts.

As a consequence, generating random data exposing such invari-
ants will simply become using an appropriate representation type while
generating random values, without having to rely on runtime reinforce-
ments of any sort. The next section introduces a generic way to generate
random values from our different representations, extending them with
a set of combinators to encode information relevant to the generation
process directly at the type level.

4 Generating Random Constructions
So far we have seen how to encode different random constructions rep-
resenting interesting values from our target data types. Such represen-
tations follow a modular approach, where each construction is indepen-
dent from the rest. This modularity allows us to derive each different
construction representation individually, as well to specify the shape of
our target data in simple and extensible manner.

In this section, we introduce the machinery required to randomly
generate the values encoded using our representations. This step also
follows the modular fashion, resulting in a random generation process
which is entirely compositional. In this light, our generators are built
from simpler ones (each one representing a single random construction),
and are solely based on the types we use to represent the shape of our
random data.

Ideally, our aim is to be able to obtain random generators with a
behavior similar to the one presented for Html in Section 2. If we take a
closer look at its definition, there we can observe three factors happening
simultaneously:

– We use QuickCheck’s generation size to limit the depth of the gener-
ated values, reducing it by one on each recursive call of the local aux-
iliary function gen .

– We differentiate between terminal and non-terminal (i.e. recursive) con-
structors, picking only among terminal ones when we have reached
the maximum depth (case gen 0 ).

– We generate different constructions in a different frequency.

For the rest of this section, we will focus on modeling these aspects in
our modular framework, in such a way that does not compromise the
compositionality obtained so far.

4.1 Depth-Bounded Modular Generators

The first obstacle that arises when trying to generate random values with
a limited depth using our approach is related to modularity. If we re-
call the random generator for Html from Section 2 we can observe that
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the depth parameter d is threaded to the different recursive calls of our
generator, always within the scope of the local function gen . Since each
construction will have a specialized random generator, we cannot group
them as we did before using an internal gen function. Instead, we will de-
fine a new type for depth-bounded generators, wrapping QuickCheck’s
Gen type with an external parameter representing the maximum recur-
sive depth:

type BGen a = Int → Gen a

A BGen is, essentially, a normal QuickCheck Gen with the maximum re-
cursive depth as an input parameter. Using this definition, we can gener-
alize QuickCheck’s Arbitrary class to work with depth-bounded genera-
tors simply as follows:

class BArbitrary (a :: ∗) where
barbitrary :: BGen a

From now on, we will use this type class as a more flexible substitute
of Arbitrary , given that now we have two parameters to tune: the maxi-
mum recursive depth, and the QuickCheck generation size. The former is
useful for tuning the overall size of our random data, whereas the latter
can be used for tuning the values of the leaf types, such as the maximum
length of the random strings or the biggest/smallest random integers.

Here we want to remark that, even though we could have used
QuickCheck’s generation size to simultaneously model the maximum re-
cursive depth and the maximum size of the leaf types, doing so would
imply generating random values with a decreasing size as we move
deeper within a random value, obtaining for instance, random trees with
all zeroes on its leaves, or random lists skewed to be ordered in decreas-
ing order. In addition, one can always obtain a trivial Arbitrary instance
from a BArbitrary one, by setting the maximum depth to be equal to
QuickCheck’s generation size:

instance BArbitrary a ⇒ Arbitrary a where
arbitrary = sized barbitrary

Even though this extension allows QuickCheck generators to be depth-
aware, here we also need to consider the parametric nature of our repre-
sentations. In the previous section, we defined each construction repre-
sentation as being parametric on the type of its recursive sub-terms, as a
way to defer this choice until we have specified the final shape of our tar-
get data. Hence, each construction representation is of kind ∗ → ∗. If we
want to define our generators in a modular way, we also need to param-
eterize somehow the generation of the recursive sub-terms! If we look at
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QuickCheck, this library already defines a type class Arbitrary1 for para-
metric types of kind ∗ → ∗, which solves this issue by receiving the gen-
erator for the parametric sub-terms as an argument:

class Arbitrary1 (f :: ∗ → ∗) where
liftArbitrary :: Gen a → Gen (f a)

Then, we can use this same mechanism for our modular generators, ex-
tending Arbitrary1 to be depth-aware as follows:

class BArbitrary1 (f :: ∗ → ∗) where
liftBGen :: BGen a → BGen (f a)

Note the similarities between Arbitrary1 and BArbitrary1 . We will use
this type class to implement random generators for each construction we
are automatically deriving. Recalling our Html example, we can define
modular random generators for the constructions representing its data
constructors as follows:

instance BArbitrary1 ConText where
liftBGen bgen d = MkText 〈$〉 arbitrary

instance BArbitrary1 ConSing where
liftBGen bgen d = MkSing 〈$〉 arbitrary

instance BArbitrary1 ConTag where
liftBGen bgen d = MkTag 〈$〉 arbitrary 〈?〉 bgen (d−1 )

instance BArbitrary1 Con(:+:) where
liftBGen bgen d = Mk(:+:) 〈$〉 bgen (d−1 ) 〈?〉 bgen (d−1 )

Note how each instance is defined to be parametric of the maximum
depth (using the input integer d ) and of the random generator used for
the recursive sub-terms (using the input generator bgen). Every other
non-recursive sub-term can be generated using a normal Arbitrary in-
stance—we use this to generate random Strings in the previous defini-
tions.

The rest of our representations can be generated analogously. For
example, the BArbitrary1 instances for Funbold and Patsimplify#2 are as
follows:

instance BArbitrary1 Funbold where
liftBGen bgen d = Mkbold 〈$〉 bgen (d−1 )

instance BArbitrary1 Patsimplify#2 where
liftBGen bgen d =

Mksimplify#2 〈$〉 arbitrary 〈?〉 bgen (d−1 ) 〈?〉 bgen (d−1 )

Then, having the modular generators for each random construction
in place, we can obtain a concrete depth-aware generator (of kind ∗) for
any final representation Fix f as follows:
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instance BArbitrary1 f ⇒ BArbitrary (Fix f ) where
barbitrary d = Fix 〈$〉 liftBGen barbitrary d

There, we use the BArbitrary1 instance of our representation f to gen-
erate sub-terms recursively by lifting itself as the parameterized input
generator (liftBGen barbitrary), wrapping each recursive sub-term with
a Fix data constructor.

The machinery developed so far lets us generate single random con-
structions in a modular fashion. However, we still need to develop our
generation mechanism a bit further in order to generate composite rep-
resentations built using the ⊕ operator. This is the objective of the next
sub-section.

4.2 Encoding Generation Behavior Using Types

As we have seen so far, generating each representation is rather straight-
forward: there is only one data constructor to pick, and every field is
generated using a mechanical recipe. In our approach, most of the gener-
ation complexity is encoded in the random generator for composite rep-
resentations, built upon the ⊕ operator. Before introducing it, we need
to define some additional machinery to encode the notions of terminal
construction and generation frequency.

Recalling the random generator for Html presented in Section 2, we
can observe that the last generation level (see gen 0 ) is constrained to
generate values only from the subset of terminal constructions. In order
to model this behavior, we will first define a data type Term to tag every
terminal construction explicitly:

data Term (f :: ∗ → ∗) r = Term (f r)

Then, if f is a terminal construction, the type Term f ⊕ g can be inter-
preted as representing data generated using values drawn both from f
and g , but closed using only values from f . Since this data type will not
add any semantic information to the represented values, we can define
suitable Algebra and BArbitrary1 instances for it simply by delegating
the work to the inner type:

instance Algebra f a ⇒ Algebra (Term f ) a where
alg (Term f ) = alg f

instance BArbitrary1 f ⇒ BArbitrary1 (Term f ) where
liftBGen bgen d = Term 〈$〉 liftBGen bgen d

Worth mentioning, our approach does not requires the final user to
manually specify terminal constructions—a repetitive task which might
lead to obscure non-termination errors if a recursive construction is
wrongly tagged as terminal. In turn, this information can be easily ex-
tracted at derivation time and included implicitly in our refined type-
level idiom, described in detail in Section 5.
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The next building block of our framework consists in a way of spec-
ifying the generation frequency of each construction. For this purpose,
we can follow the same reasoning as before, defining a type-level opera-
tor ⊗ to explicitly tag the generation frequency of a given representation:

data ((f :: ∗ → ∗)⊗ (n :: Nat)) r = Freq (f r)

This operator is parameterized by a type-level natural number n (of
kind Nat) representing the desired generation frequency. In this light,
the type (f ⊗ 3 )⊕ (g ⊗ 1 ) represents data generated using values from
both f and g , where f is randomly chosen three times more frequently
than g . In practice, we defined ⊗ such that it associates more strongly
than ⊕, thus avoiding the need of parenthesis in types like the previous
one. Analogously as Term , the operator ⊗ does not add any semantic
information to the values it represents, so we can define its Algebra and
BAbitrary1 instance by delegating the work to the inner type as before:

instance Algebra f a ⇒ Algebra (f ⊗n) a where
alg (Freq f ) = alg f

instance BArbitrary1 f ⇒ BArbitrary1 (f ⊗n) where
liftBGen bgen d = Freq 〈$〉 liftBGen bgen d

With these two new type level combinators, Term and⊗, we are now
able to express the behavior of our entire generation process based solely
on the type we are generating.

In addition to these combinators, we will need to perform some type-
level computations based on them in order to define our random gener-
ator for composite representations. Consider for instance the following
type—expressed using parenthesis for clarity:

(f ⊗ 2 )⊕ ((g ⊗ 3 )⊕ (Term h ⊗ 5 ))

Our generation process will traverse this type one combinator at a time,
processing each occurrence of ⊕ independently. This means that, in or-
der to select the appropriate generation frequency of each operand we
need to calculate the overall sum of frequencies on each side of the ⊕.
For this purpose, we rely on Haskell’s type-level programming feature
known as type families [23]. In this light, we can implement a type-level
function FreqOf to compute the overall sum of frequencies of a given
representation type:

type family FreqOf (f :: ∗ → ∗) :: Nat where
FreqOf (f ⊕ g) = FreqOf f +FreqOf g
FreqOf (f ⊗n) = n∗FreqOf f
FreqOf (Term f ) = FreqOf f
FreqOf = 1
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This type-level function takes a representation type as an input and tra-
verses it recursively, adding up each frequency tag found in the process,
and returning a type-level natural number. Note how in the second equa-
tion we multiply the frequency encoded in the ⊗ tag with the frequency
of the type it is wrapping. This way, the type ((f ⊗ 2 )⊕ g)⊗ 3 is equiva-
lent to (f ⊗ 6 )⊕ (g ⊗ 3 ), following the natural intuition for the addition
and multiplication operations over natural numbers. Moreover, if a type
does not have an explicit frequency, then its generation frequency is de-
faulted to one.

Furthermore, the last step of our generation process, which only
generates terminal constructions, could be seen as considering the non-
terminal ones as having generation frequency zero. This way, we can in-
troduce another type-level computation to calculate the terminal genera-
tion frequency FreqOf ′ of a given representation:

type family FreqOf ′ (f :: ∗ → ∗) :: Nat where
FreqOf ′ (f ⊕ g) = FreqOf ′ f +FreqOf ′ g
FreqOf ′ (f ⊗n) = n∗FreqOf ′ f
FreqOf ′ (Term f ) = FreqOf f
FreqOf ′ = 0

Similar to FreqOf , the type family above traverses its input type adding
the terminal frequency of each sub-type. However, FreqOf ′ only consid-
ers the frequency of those representation sub-types that are explicitly
tagged as terminal, returning zero in any other case.

Then, using the Term and⊗ combinators introduced at the beginning
of this sub-section, along with the previous type-level computations over
frequencies, we are finally in position of defining our random generator
for composite representations:

instance (BArbitrary1 f ,BArbitrary1 g)
⇒ BArbitrary1 (f ⊕ g) where

liftBGen bgen d =
if d>0
then frequency
[(freqVal @(FreqOf f ), InL 〈$〉 liftBGen bgen d)
, (freqVal @(FreqOf g), InR 〈$〉 liftBGen bgen d)]

else frequency
[(freqVal @(FreqOf ′ f ), InL 〈$〉 liftBGen bgen d)
, (freqVal @(FreqOf ′ g), InR 〈$〉 liftBGen bgen d)]

Like the generator for Html introduced in Section 2, this generator branches
over the current depth d . In the case we can still generate values from
any construction (d>0 ), we will use QuickCheck’s frequency operation to
randomly choose between generating a value of each side of the ⊕, i.e.,
either a value of f or a value of g , following the generation frequencies
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specified for both of them, and wrapping the values with the appropri-
ate injection InL or InR on each case. Such frequencies are obtained by
reflecting the type-level natural values obtained from applying FreqOf to
both f and g , using a type-dependent function freqVal that returns the
number corresponding to the type-level natural value we apply to it:

freqVal :: ∀n . KnownNat n ⇒ Int

Note that the type of freqVal is ambiguous, since it quantifies over every
possible known type-level natural value n . We use a visible type application
[7] (employing the @(...) syntax) to disambiguate to which natural value
we are actually referring to. Then, for instance, the value

freqVal @(FreqOf (f ⊗ 5 ⊕ g ⊗ 4 ))

evaluates to the concrete value 9 :: Int .
The else clause of our random generator works analogously, except

that, this time we only want to generate terminal constructions, hence
we use the FreqOf ′ type family to compute the terminal generation fre-
quency of each operand. If any of FreqOf ′ f or FreqOf ′ g evaluates to
zero, it means that such operand does not contain any terminal construc-
tions, and frequency will not consider it when generating terminal values.

Moreover, if it happens that both FreqOf ′ f and FreqOf ′ g compute
to zero simultaneously, then this will produce a runtime error triggered
by the function frequency , as it does not have anything with a positive
frequency to generate. This kind of exceptions will arise, for example,
if we forget to include at least one terminal construction in our final
representation—thus leaving the door open for potential infinite gener-
ation loops. Fortunately, such runtime exceptions can be caught at com-
pile time. We can define a type constraint Safe that ensures we are trying
to generate values using a representation with a strictly positive termi-
nal generation frequency—thus containing at least a single terminal con-
struction:

type family Safe (f :: ∗ → ∗) :: Constraint where
Safe f = IsPositive (FreqOf ′ f )

type family IsPositive (n :: Nat) :: Constraint where
IsPositive 0 = TypeError "No terminals"
IsPositive = ()

These type families compute the terminal generation frequency of a rep-
resentation type f , returning either a type error, if its result is zero; or,
alternatively, an empty constraint () that is always trivially satisfied. Fi-
nally, we can use this constraint to define a safe generation primitive
genRep to obtain a concrete depth-bounded generator for every target
type a , specified using a “safe” representation f :
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genRep :: ∀ f a . (BArbitrary1 f ,Safe f ,Algebra f a)⇒ BGen a
genRep d = eval 〈$〉 barbitrary @(Fix f ) d

Note how this primitive is also ambiguous in the type used for the rep-
resentation. This allows us to use a visible type application to obtain val-
ues from the same target type but generated using different underlying
representations. For instance, we can obtain two different concrete gener-
ators of our Html type simply by changing its generation representation
type as follows:

genHtmlvalid :: BGen Html
genHtmlvalid = genRep @Htmlvalid

genHtmlsimplify :: BGen Html
genHtmlsimplify = genRep @Htmlsimplify

where Htmlvalid and Htmlsimplify are the representations types introduced
in Figure 1b—the syntax used to define them is completed in the next
section.

So far we have seen how to represent and generate values for our
target data type by combining different random constructions, as well
as a series of type-level combinators to encode the desired generation
behavior. The next section refines our type-level machinery in order to
provide a simple idiom for defining composable random generators.

5 Type-Level Generation Specifications
This section introduces refinements to our basic language for describing
random generators, making it more flexible and robust in order to fit
real-world usage scenarios.

The first problem we face is that of naming conventions. In practice,
the actual name used when deriving the representation for each random
construction needs to be generated such that it complies with Haskell’s
syntax, and also that it is unique within our namespace. This means that,
type names like Fun〈+〉 or Patsimplify#1 are, technically, not valid Haskell
data type names, thus they will have to be synthesized as something like
Fun_lt_plus_gt_543 and Pat_simplify_1 _325 , where the last sequence of
numbers is inserted by Template Haskell to ensure uniqueness.

This naming convention results hard to use, specially if we consider
that we do not know the actual type names until they are synthesized
during compilation, due to their unique suffixes. Fortunately, it is easy to
solve this problem using some type-level machinery. Instead of imposing
a naming convention in our derivation tool, we define a set of open type
families to hide each kind of construction behind meaningful names:

type family Con (c :: Symbol)
type family Fun (f :: Symbol)
type family Pat (p :: Symbol) (n :: Nat)
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where Symbol is the kind of type-level strings in Haskell. Then, our
derivation process will synthesize each representation using unique names,
along with a type instance of the corresponding type family, i.e., Con for
data constructors, Fun for interface functions, and Pat for functions’ pat-
terns. For instance, along with the constructions representations ConText ,
Fun〈+〉 and Patsimplify#1 , we will automatically derive the following type
instances:

type instance Con "Text" = Term Con_Text_123
type instance Fun "<+>" = Fun_lt_plus_gt_543
type instance Pat "simplify" 1 = Term Pat_simplify_1 _325

As a result, the end user can simply refer to each particular construction
by using these synonyms, e.g., with representation types like Con "Text"
⊕ Fun "<+>". The additional Nat type parameter on Pat simply identi-
fies each pattern number uniquely.

Moreover, notice how we include the appropriate Term tags for each
terminal construction automatically—namely Con "Text" and Pat
"simplify" 1 in the example above. Since this information is statically
available, we can easily extract it during derivation time. This relieves
us of the burden of manually identifying and declaring the terminal con-
structions for every generation specification. Additionally, it helps en-
suring the static termination guarantees provided by our Safe constraint
mechanism.

Using the type-level extension presented so far, we are now able to
write the generation specifications presented in Figure 1b in a clear and
concise way.

5.1 Parametric Target Data Types

So far we have seen how to specify random generators for our simple self-
contained Html data type. In practice, however, we are often required to
write random generators for parametric target data types as well. Con-
sider, for example, the following Tree data type definition encoding bi-
nary trees with generic information of type a in the leaves:

data Tree a = Leaf a | Node (Tree a) (Tree a)

In order to represent its data constructors, we can follow the same
recipe presented in Section 3, but also parameterizing our representa-
tions over the type variable a as well:

data ConLeaf a r = MkLeaf a
data ConNode a r = MkNode r r

The rest of the machinery can be derived in the same way as before,
carrying this type parameter and including the appropriate Arbitrary
constraints all along the way:
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instance Algebra (ConLeaf a) (Tree a) where · · ·
instance Algebra (ConNode a) (Tree a) where · · ·
instance Arbitrary a ⇒ BArbitrary1 (ConLeaf a) where · · ·
instance Arbitrary a ⇒ BArbitrary1 (ConNode a) where · · ·

Then, instead of carrying this type parameter in our generation spec-
ifications, we can avoid it by hiding it behind an existential type:

data Some (f :: ∗ → ∗ → ∗) (r :: ∗) = ∀(a :: ∗) . Some (f a r)

The type constructor Some is a wrapper for a 2-parametric type that
hides the first type variable using an explicit existential quantifier. Note
thus that the type parameter a does not appears at the left hand side of
Some on its definition. In this light, when deriving any Con , Fun or Pat
type instance, we can use this type wrapper it to hide the additional type
parameters of each construction representation:

type instance Con "Leaf" = Term (Some ConLeaf )
type instance Con "Node" = Some ConNode

As a consequence, we can write generation specifications for our Tree
data type without having to refer to its type parameter anywhere. For
instance:

type TreeSpec = Con "Leaf" ⊗ 2
⊕ Con "Node" ⊗ 3

Instead, we defer handling this type parameter until we actually use
it to define a concrete generator. For instance, we can write a concrete
generator of Tree Int as follows:

genIntTree :: BGen (Tree Int)
genIntTree = genRep @(TreeSpec C Int)

Where C is a type family that simply traverses our generation specifica-
tion, applying the Int type to each occurrence of Some , thus eliminating
the existential type:

type family (f :: ∗ → ∗) C (a :: ∗) :: ∗ → ∗ where
(Some f ) C a = f a
(f ⊕ g) C a = (f C a)⊕ (g C a)
(f ⊗n) C a = (f C a)⊗n
(Term f ) C a = Term (t C a)
f C a = f

As a result, in genIntTree , theC operator will reduce the type (TreeSpecC
Int) to the following concrete type:
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(Term (ConLeaf Int) ⊗ 2 ) ⊕ ((ConNode Int) ⊗ 3 )

Worth mentioning, this approach for handling parametric types can be
extended to multi-parametric data types with minor effort.

Along with our automated constructions derivation mechanism, the
machinery introduced in this section allows us to specify random gener-
ators using a simple type-level specification language.

The next section evaluates our approach in terms of performance us-
ing a set of case studies extracted from real-world Haskell implementa-
tions, along with an interesting runtime optimization.

6 Benchmarks and Optimizations
The random generation framework presented throughout this paper al-
lows us to write extensible generators in a very concise way. However,
this expressiveness comes attached to a perceptible runtime overhead,
primarily inherited from the use of Data Types à la Carte—a technique
which is not often scrutinized for performance. In this section, we evalu-
ate the implicit cost of composing generators using three real-world case
studies, along with a type-level optimization that helps avoiding much
of the runtime bureaucracy.

Balanced Representations As we have shown in Section 4, the random
generation process we propose in this paper can be seen as having two
phases. First, we generate random values from the representation types
used to specify the shape of our data; and then we use their algebras to
translate them to the corresponding values of our target data types. In
particular, this last step is expected to pattern match repeatedly against
the InL and InR constructors of the ⊕ operators when traversing each
construction injection. Because of this, in general, we expect a perfor-
mance impact with respect to manually-written concrete generators.

As recently analyzed by Kiriyama et al., this slowdown is expected to
be linear in the depth of our representation type [12]. In this light, one can
drastically reduce the runtime overhead by associating each ⊕ operator
in a balanced fashion. So, for instance, instead of writing (f ⊕ g ⊕ h ⊕ i),
which is implicitly parsed as (f ⊕ (g ⊕ (h ⊕ i))); we can associate
constructions as ((f ⊕ g) ⊕ (h ⊕ i)), thus reducing the depth of our
representation from four to three levels and, in general, from a O(n) to
a O(log(n)) complexity in the runtime overhead, where n is the amount
of constructions under consideration.

Worth mentioning, this balancing optimization cannot be applied to
the original fashion of Data Types à la Carte by Swierstra. This limitation
comes from that the linearity of the representation types is required in
order to define smart injections, allowing users to construct values of such
types in an easy way, injecting the appropriate sequences of InL and InR

constructors automatically. There, a naïve attempt to use smart injections
in a balanced representation may fail due to the nature of Haskell’s type
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checker, and in particular on the lack of backtracking when solving type-
class constraints. Fortunately, smart injections are not required for our
purposes, as users are not expected to construct values by hand at any
point—they are randomly constructed by our generators.

Benchmarks We analyzed the performance of generating random values
using three case studies: (i) Red-Black Trees (RBT), inspired by Okasaki’s
formulation [19], (ii) Lisp S-expressions (SExp), inspired by the package
hs-zuramaru16, and (iii) HTML expressions (HTML), inspired by the html
package, which follows the same structure as our motivating Html ex-
ample. The magnitude of each case study can be outlined as shown in
Table 2.

These case studies provide a good combination of data constructors,
interface functions and patterns, and cover from smaller to larger num-
bers of constructions.

Then, we benchmarked the execution time required to generate and
fully evaluate 10000 random values corresponding to each case study,
comparing both manually-written concrete generators, and those ob-
tained using our modular approach. For this purpose, we used the Crite-
rion [20] benchmarking tool for Haskell, and limited the maximum depth
of the generated values to five levels. Additionally, our modular gener-
ators were tested using both linear and balanced generation specifica-
tions. Figure 3 illustrates the relative execution time of each case study,
normalized to their corresponding manually-written counterpart—we
encourage the reader to obtain a colored version of this work.

As it can be observed, our approach suffers from a noticeable runtime
overhead when using linearly defined representations, specially when
considering the HTML case study, involving a large number of construc-
tions in the generation process. However, we found that, by balancing
our representation types, the generation performance improves dramat-
ically. At the light of these improvements, our tool includes an additional
type-level computation that automatically balances our representations in or-
der to reduce the generation overhead as much as possible.

On the other hand, it has been argued that the generation time is often
not substantial with respect to the rest of the testing process, especially

Case Study #Con #Fun #Pat Total Constructions

RBT 2 5 6 13
SExp 6 - 9 15

HTML 4 132 - 136

Figure 2: Overview of the size of our case studies.

16http://hackage.haskell.org/package/zuramaru

http://hackage.haskell.org/package/zuramaru
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when testing complex properties over monadic code, as well as using
random values for penetration testing [9, 18].

All in all, we consider that these results are fairly encouraging, given
that the flexibility obtained from using our compositional approach does
not produce severe slowdowns when generating random values in prac-
tice.

SExpRBT HTML

0

1

2

3

4

R
el

at
iv

e
G

en
er

at
io

n
Ti

m
e

Manual Composable (linear) Composable (balanced)

Figure 3: Generation time comparison between manually written and
automatically derived composable generators.

7 Related Work
Extensible Data Types Swierstra proposed Data Types à la Carte [24], a
technique for building extensible data types, as a solution for the expres-
sion problem coined by Wadler [26]. This technique has been successfully
applied in a variety of scenarios, from extensible compilers, to compos-
able machine-mechanized proofs [4,5,21,27]. In this work, we take ideas
from this approach and extend them to work in the scope of random
data generation, where other parameters come into play apart from just
combining constructions, e.g., generation frequency and terminal con-
structions.

From the practical point of view, Kiriyama et al. propose an optimiza-
tion mechanism for Data Types à la Carte, where a concrete data type has
to be derived for each different composition of constructions defined by
the user [12]. This solution avoids much of the runtime overhead intro-
duced when internally pattern matching against sequences of InL and
InR data constructors. However, this approach is not entirely composi-
tional, as we still need to rely on Template Haskell to derive the machin-
ery for each specialized instance of our data type. In our particular setting,
we found that our solution has a fairly acceptable overhead, achieved by
automatically balancing our representation types.
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Domain Specific Languages Testing properties using small values first is a
good practice, both for performance and for obtaining small counterex-
amples. In this light, SmallCheck [22] is a library for defining exhaustive
generators inspired by QuickCheck. Such generators can be used to test
properties against all possible values of a data type of up to a given depth.
The authors also present Lazy SmallCheck, a variation of SmallCheck pre-
pared to use partially defined inputs to explore large parts of the search
space at once.

Luck [14] is a domain-specific language for describing testing proper-
ties and random generators in parallel. It allows obtaining random gen-
erators producing highly constrained random data by using a mixture of
backtracking and constraint solving while generating values. While this
approach can lead to quite good testing results, it still requires users to
manually think about how to generate their random data. Moreover, the
generators obtained are not compiled, but interpreted. In consequence,
Luck’s generators are rather slow, typically around 20 times slower than
compiled ones.

In contrast to these tools, this work lies on the automated side, where
we are able to provide lightweight invariants over our random data by
following the structural information extracted from the users’ codebase.

Automatic Derivation Tools In the past few years, there has been a bloom
of automated tools for helping the process of writing random generators.

MegaDeTH [8, 9] is a simple derivation tool that synthesizes genera-
tors solely based on their types, paying no attention whatsoever to the
generation frequency of each data constructor. As a result, it has been
shown that its synthesized generators are biased towards generating
very small values [18].

Feat [6] provides a mechanism to uniformly generating values from
a given data type of up to a given size. It works by enumerating all the
possible values of such type, so that sampling uniformly from it simply
becomes sampling uniformly from a finite prefix of natural numbers—
something easy to do. This tool has been shown to be useful for gener-
ating unbiased random values, as they are drawn uniformly from their
value space. However, sampling uniformly may not be ideal in some sce-
narios, specially when our data types are too general, e.g., using Feat to
generate valid HTML values as in our previous examples would be quite
ineffective, as values drawn uniformly from the value space of our Html
data type represent, in most cases, invalid HTML values.

On the other hand, DRAGEN is a tool that synthesizes optimized
generators, tuning their generation frequencies using a simulation-based
optimization process, which is parameterized by the distribution of val-
ues desired by the user [18]. This simulation is based on the theory of
branching processes, which models the growth and extinction of popula-
tions across successive generations. In this setting, populations consist
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of randomly generated data constructors, where generations correspond
to each level of the generated values. This tool has shown to improve
the code coverage over complex systems, when compared to other auto-
mated generators derivation tools.

In a recent work, we extended this approach to generate random val-
ues considering also the other sources of structural information covered
here, namely abstract interfaces and function pattern matchings [17].
There, we focus on the generation model problem, extending the theory
of branching processes to obtain sound predictions about distributions
of random values considering these new kinds of constructions. Using
this extension, we shown that using extra information when generat-
ing random values can be extremely valuable, in particular under situa-
tions like the ones described in Section 2, where the usual derivation ap-
proaches fail to synthesize useful generators due to a lack of structural
information. In turn, this paper tackles the representation problem, ex-
ploring how a compositional generation process can be effectively imple-
mented and automated in Haskell using advanced type-level features.

In the light of that none of the aforementioned automated deriva-
tion tools are designed for composability, we consider that the ideas pre-
sented in this paper could perhaps be applied to improve the state-of-
the-art in automatic derivation of random generators in the future.

8 Conclusions
We presented a novel approach for automatically deriving flexible com-
posable random generators inspired by the seminal work on Data Types
à la Carte. In addition, we incorporate valuable structural information
into our generation process by considering not only data constructors,
but also the structural information statically available in abstract inter-
faces and functions’ pattern matchings.

In the future, we aim to extend our mechanism for obtaining random
generators with the ability of performing stateful generation. In this light,
a user could indicate which random constructions interact with their en-
vironment, obtaining random generators ensuring strong invariants like
well-scopedness or type-correctness, all this while keeping the deriva-
tion process as automatic as possible.
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