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“Sometimes I’ll start a sentence, and I don’t even know
where it’s going. I just hope I find it along the way.”

- Michael Scott
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Abstract

As software systems become bigger and scarier, automating their testing is
crucial to ensure that our confidence in them can keep up with their growth.
In this setting, Generational Fuzzing and Random Property-Based Testing are
two sides of the same testing technique that can help us find bugs effectively
without having to spend countless hours writing unit tests by hand. They
both rely on generating large amounts of random (possibly broken) test cases
to be used as inputs to the system. Test cases that trigger issues such as
crashes, memory leaks, or failed assertions are reported back to the developer
for further investigation. Despite being fairly automatable, the Achilles heel of
this technique lies in the quality of the randomly generated test cases, often
requiring substantial manual work to tune the random generation process when
the system under test expects inputs satisfying complex invariants.

This thesis tackles this problem from the Programming Languages perspect-
ive, taking advantage of the richness of functional, statically-typed languages
like Haskell to develop automated techniques for generating good-quality ran-
dom test cases, as well as for automatically tuning the testing process in our fa-
vor. To this purpose, we rely on well-established ideas such as coverage-guided
fuzzing, meta-programming, type-level programming, as well as novel inter-
pretations of centuries-old statistical tools designed to study the evolution of
populations such as branching processes. All these ideas are empirically valid-
ated using an extensive array of case studies and supported by a substantial
number of real-world bugs discovered along the way.
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Chapter 1

Introduction

Testing software is critical to ensure its correctness, robustness and reliability.
So much so, that it is hard to imagine that any non-trivial system would be
released without having first thoroughly validated it meets its functional and
security requirements. Despite this, most of the software we use nowadays is
frustratingly buggy in one way or another. For the most part, the bugs we
experience daily are no more than little annoyances left there to remind us
how much of a can of worms computers can be, e.g., Slack randomly crashing
only when VirtualBox is running in the background.1 However, every so often,
some bugs are so influential that they make it all the way to the news. Most
of these are yet another buffer overflow in an open-source library that was
exploited to run arbitrary code and steal sensitive data from millions of users

— news outlets have slow days, too. But not all of them are caused by using
deprecated string functions that no one cared enough to update. The ones that
stick are those that evoke empathy for the humans behind them. Let us take
CVE-2014-1266 (a.k.a. Apple’s goto fail) as an example:

if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)

goto fail;

if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)

goto fail;

goto fail;

... // Other checks

err = sslRawVerify(...);

...

fail:

... // Cleanup code

return err;

1A real bug that some software gurús claim is most likely caused by having a screensaver
enabled in the guest virtual machine. A different school of thought, however, believes the
issue comes from using VirtualBox’s bidirectional clipboard. None of these diagnoses have led
to a permanent solution, and the bug is still at large at the time of writing. Intrigued readers
can find the entrance of the rabbit hole at https://www.virtualbox.org/ticket/20022.

1

https://www.virtualbox.org/ticket/20022
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A code fragment similar to the one above was supposed to validate the
authenticity of a secure SSL/TLS connection, but the repeated goto fail;
causes it to skip a vital check sslRawVerify and return a non-error code. This,
in turn, opened the door for potential eavesdropping by a malicious attacker,
affecting anyone running iOS or macOS up until early 2014.

Interestingly, this critical security bug was not caused by a subtle race
condition, a memory leak, or anything else making it hard to reason about.
It was likely just a simple copy-and-double-paste mistake that put Apple’s
SSL/TLS system and thus the trust in the security of their products in shambles.

“Who is responsible for all this havoc?” One might ask.

One could start by claiming that C allowing if statements without curly
braces in their then block is the main offender here. But C is more than 50
years old, and by now we should all be used to dealing with its quirks and
features. Changing them would take more effort than it is worth spending, and
still, we risk making matters worse, so we quickly establish that whatever the
C standard accepts as a valid program is the law, and we must abide by it.

We want names here, so let us try to pin the crime on the development
process instead. The first suspect is the team who wrote the buggy code. They
seem to have done so at 16:45 on a Friday, though. We should give them
some leeway to make an honest mistake. The second suspect in the police
lineup is the team in charge of writing tests for that code, but it turns out
their alibi was having a “case of the Mondays” at the time of the crime, so
they deserve to get some slack too. The last suspect we gather is the project
manager responsible for that code, under the presumption that they could
have allocated more budget into testing it before it was deployed. Easier said
than done, the defendant claimed. “Budget (either time or financial) is finite,
and the project was already over it anyways.” After conducting this thorough
fictitious investigation, the case remains open.

Hopefully clear by now, we cannot expect us humans2 to deliver perfectly
reliable solutions at any step of the development process of a critical software
system. One way to improve the quality of software is, perhaps unsurprisingly,
to put as much effort as possible into testing and/or formally verifying it.
Even more so when a system is both critical and widely used, as it becomes
an attractive target for attackers looking for a challenge. However, finding
programmers who enjoy and are good at testing (or verifying) software is
hard. To tackle this problem in the supply chain, the software industry tends
to complement any existing testing effort with raw computing power and
automation. Instead of carefully crafting test code that covers all possible
corners of a system, the system can be fed with many random, arbitrary inputs
until something inevitably breaks — signaling the existence of a bug or even a
security vulnerability. This simple idea is the essence of software fuzzing and it
is remarkably powerful at finding bugs that uncover corner cases that humans
cannot easily spot in advance.

Fuzzing is quite popular in part because it is very automatable: it can run
24/7 with minimal intervention, and changes in the codebase do not necessarily

2Assuming the reader is not a bot scraping this thesis to train an AI model.
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require any change in the testing harness. In some occasions, however, fuzzing
can be too coarse to be effective. This is because fuzzers normally handle
full systems at once, which either break or crash with a given input or do
not. The problem is that even if a system does not crash with a given input,
there might still be plenty of opportunities for something to go wrong inside
of it. With this in mind, a notable approach for testing systems is known as
Random Property-Based Testing (RPBT), where we split the initial assertion
“does the system crash?” into several testing properties, each one specialized
on validating a particular aspect of the expected behavior of the system under
test, e.g., the correctness of a concrete optimization pass in a compiler; the
consistency of a database after a trigger is executed; the parser and pretty-
printer of a programming language being “somewhat” inverse with each other,
and so on. Running these specialized properties in tandem not only gives
us a better understanding of the correctness of a system but also simplifies
finding the origin of the bugs they find, as individual testing properties tend to
encompass smaller portions of the codebase.

Although RPBT is very useful to validate the properties a system must
satisfy, as these properties drift away from the relatively simple initial assertion
“does the system crash?” they become more challenging to test effectively. This
is in part because using test inputs resembling random noise to test complex
properties can render the whole process ineffective, since the code they intend
to test might rely on non-trivial internal assumptions, e.g., their inputs having
already been validated against some specification. This is often referred to as
having properties with “sparse” preconditions, and it is accepted that testing
them effectively requires substantial manual intervention. In this scenario,
programmers need to tailor the generation process that produces random testing
inputs to satisfy these sparse preconditions on a reasonable basis so they can
penetrate the surface layers of the system under test. This increases the chances
of finding real bugs (because the inputs remain mostly within their specification)
but, at the same time, increases costs and opens the door for human bias.

As mentioned earlier, being automatable is a key feature for these testing
approaches to be used in real-world systems. Thus, the need for manual
intervention when requirements become less trivial makes them much less
appealing, and it seems as though we are also back to where we started from:
having to trust humans to manually do the right thing, even on Mondays.
Fortunately, there are many of us, some being lucky enough to have the
opportunity to dive into this timely problem a little deeper, so the goals of this
thesis are to:

1. Recognize the limitations of existing automated testing approaches, fo-
cusing on the aspects that deter effectiveness in the face of testing sys-
tems with sparse preconditions.

2. Develop both theoretical and empirical techniques to tackle these limita-
tions. To this purpose, we rely on well-established ideas such as coverage-
guided fuzzing, meta-programming, type-level programming, as well as
novel interpretations of centuries-old statistical tools designed to study
the evolution of populations such as branching processes.



4 CHAPTER 1. INTRODUCTION

3. Develop software tools implementing these ideas to enable the end-user to
test their systems as automatically as possible. These tools are released
as publicly available open-source software.

4. Demonstrate how these ideas are robust enough to improve the state-of-
the-art of automated PBT, collecting and presenting enough empirical
data for the reader to make informed decisions in their future testing
endeavors.

Why Haskell? Strongly-typed programming languages like Haskell are prime
tools for developing automated testing techniques. This is because program-
mers can statically encode much of the structure of their programs using the
language’s type system, e.g., by defining custom algebraic data types that pre-
cisely represent the program’s inputs. This enables the compiler to collect use-
ful information and pass it onto our automated testing framework, which can
later use it to fine-tune the testing process.

Although we use Haskell as the lingua franca of this thesis, the ideas
presented here should be reproducible in other programming languages with
similar features up to a reasonable extent.

Thesis Structure This thesis includes seven peer-reviewed articles accepted
to journals, conferences, symposia and workshops spread out across different
academic communities, with Software Testing (Papers I, III, and VII) and
Programming Languages (Papers II, IV, V and VI) being the main categories.
Naturally, these boundaries are rather fuzzy so, to make some justice to this
taxonomy, Figure 1 groups these articles by their areas of contribution.

The rest of this chapter briefly outlines the main ideas covered by this
thesis, indicating when progress has been made in some of the peer-reviewed
papers included in it.

1 Fuzzing

Fuzzing [1] is a technique used in software testing and security analysis (e.g.,
penetration testing [2]) which involves providing unexpected inputs to a system
under test. A program that performs fuzzing campaigns to test a program is
colloquially known as a fuzzer. The intuition behind a fuzzer is simple: it picks
an input from some inputs repository, feeds it to the system under test, and
monitors its behavior to signal different kinds of results, e.g., normal executions,
crashes, memory leaks and failed code assertions. This process is repeated in a
loop until something bad happens in the target system or, alternatively, until
a stopping condition is reached (e.g., number of tests or total time). Then, any
anomaly detected in the expected behavior of the system under test is reported
along with the input producing it. Figure 2 shows a simplified representation
of this approach.

Real-world fuzzers typically implement certain tweaks to boost the chances
of finding different kinds of vulnerabilities with remarkable success [3]–[14].
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Paper I
JSS’17

Paper II
HASKELL’18

Paper III
AST’19

Paper IV
IFL’19

Paper V
TFP’20

Paper VI
PLAS’20

Paper VII
ICST’23

Programming
Languages

Fuzzing

Automated
Testing

Stochastic
Models

Figure 1: Areas of contribution of each paper included in this thesis.

One of the biggest differentiators between fuzzers is the nature of the inputs
used to test the system under test, covering the full spectrum from completely
random noise to completely semantically valid ones. Moreover, the origin of
these inputs denotes an important distinction used to classify different kinds of
fuzzing models [15], as described below.

• Mutational Fuzzers: they use an existing set of (usually valid) inputs
that are combined in different ways through randomization. In practice,
they often rely on an external set of input seeds provided by the user,
known as a corpus. A mutational fuzzer takes one or more seeds from
this corpus and produces a mutated version that it then uses as a test

System
Under Test

Inputs
Source

Fuzzer

Signal

Input

Bug
Report

Figure 2: Simplified representation of a fuzzing environment.
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input for the system under test. While this approach has shown to be
quite powerful for finding bugs, its inherent disadvantage is that the user
has to collect and maintain a carefully curated corpus manually for each
kind of input that wants to test, e.g., for each input file format.

• Generational Fuzzers: they generate test inputs from scratch using a
model that describes the format of the inputs expected by the system
under test. These models do not necessarily need to fully match the
specification of the system under test, and deliberately producing almost
valid but yet broken inputs can still be useful to uncover certain kinds
of bugs. In general, generational fuzzers avoid the problem of having to
maintain an external corpus of inputs. However, users must then develop
and maintain models of the input types they want to generate. As
expected, creating such models requires deep domain knowledge, which
can be tedious and expensive to achieve.

In this work, we focus particularly on the generational approach, although
Paper VII demonstrates a hybrid technique that could partially fit both the
generational and mutational categories — more on this later. We aim to develop
automated techniques for the random generation of unexpected inputs based on
statically-known information. This information can be extracted either directly
from the system under test or from other external sources. In particular, Paper I
is focused on automatically leveraging existing file-format manipulating libraries
to derive random input generators used to test massively used programs. This
led us to discover dozens of bugs and security vulnerabilities.

2 Property-Based Testing and QuickCheck

Instead of just feeding our software with random inputs and waiting for unex-
pected behavior, it is also possible to test our programs using randomly gen-
erated inputs in a more controlled way. The idea behind this is to verify our
code against a more formal specification than just “does the system crash?”
This specification can be defined, for instance, as a set of testing properties
that our code must fulfill for every possible input. These properties do not
necessarily involve only the input format of the system under test, but can
also be specified in terms of intermediate or specialized data formats, e.g., a
parsed abstract syntax tree, a serialized value, a set of command-line flags,
etc. Then, these properties can be individually validated using a large number
of randomly generated inputs. As mentioned earlier, this is the basis for the
technique known as Random Property-Based Testing (RPBT).

In the Haskell realm, QuickCheck [16] is the de facto tool of this sort.
Originally conceived by Koen Claessen and John Hughes, this tool counts with
many success stories and inspired the ideas behind it to be replicated in other
programming languages and systems with remarkable success [17]–[25].

Using QuickCheck requires the programmer to interact with two main
components: executable testing properties and random data generators. Akin
to a fuzzer, testing properties encapsulate the system under test (or a portion
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of it) into an executable predicate that signals whether an input produces
an unexpected result. Moreover, concrete input sources such as corpora are
instead replaced with random data generators that produce random inputs on-
the-fly. Figure 3 shows a simplified representation of this approach. Although
this thesis focuses strictly on improving random data generators, automating
the process of deriving testing specifications is also a non-trivial task that
comprises a research field of its own [16], [26]. For completeness, the following
subsections briefly introduce the reader to the usage of both components.

2.1 Testing Properties

One of the attractive aspects of QuickCheck is its simplicity. To illustrate this,
suppose we write a Haskell function reverse :: [Int] → [Int] for reversing
lists of integers. While specifying the expected behavior of this function, we
might want to assert that our implementation is its own inverse, i.e., reversing
a list twice always yields the original list. This property of our function can
be written in QuickCheck simply as a Haskell predicate parameterized over its
input, which we can think of as being universally quantified:

prop reverse ok :: [Int ]→ Bool

prop reverse ok xs =
reverse (reverse xs) == xs

Then, verifying that our function holds this property becomes simply
running QuickCheck over it:

ghci> quickCheck prop_reverse_ok

++++ OK, passed 100 tests

What happens under the hood is that QuickCheck will instantiate every
input (xs) of our property using a large number of randomly generated lists of
integers, asserting that prop reverse ok returns True for all of them.

Shall any of our properties not hold for some input, QuickCheck will try to
find a minimal counterexample for us to further analyze. For instance, reversing
a list of integers once will not always return the original list:

System
Under Test

QuickCheck

Pass/Fail

Input

Property

Random
Generator

Counterexample

Figure 3: Random Property-Based Testing with QuickCheck.
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prop reverse bad :: [Int]→ Bool

prop reverse bad xs =
reverse xs == xs

This property can be easily refuted using QuickCheck as before:

ghci> quickCheck prop_reverse_bad

*** Failed! Falsifiable (after 3 tests and 1 shrink):

[0,1]

And after a handful of random tests, we obtain a minimal counterexample
([0,1]) which falsifies prop reverse bad when used as an input.

This way, running a large number of random tests gives us statistical
confidence about the correctness of our code against its specification.

2.2 Random Generators

One of the reasons behind the simplicity of the previous examples is that the
random generation of test cases is transparently handled for us by QuickCheck.
This is achieved by using Haskell’s type classes [27]. In particular, QuickCheck
defines the Arbitrary type class for the types that can be randomly generated:

class Arbitrary a where
arbitrary :: Gen a

shrink :: a→ [a ]

The interface of this type class encodes two basic primitives. Firstly,
arbitrary specifies a monadic random generator of values of type a. Such
generators are defined in terms of the Gen monad which provides random
generation primitives. Moreover, shrink :: a → [a] specifies how a given
counterexample (of type a) can be minimized into different smaller ones. This
function is used to report a minimal counterexample after a bug is found.

QuickCheck comes equipped with Arbitrary instances for most basic data
types in the Haskell prelude. In particular, our previous testing examples
simply use the default Arbitrary instances for integers and lists. This way,
it is quite easy to test properties defined in terms of basic data types using
QuickCheck. However, things get more complex when we start defining our
own custom data types.

Algebraic Data Types Haskell has a powerful type system that can be
extended with custom data types defined by the user. For instance, suppose
we want to represent simple HTML pages as Haskell values. For this purpose,
we can define the following custom algebraic data type:

data Html =
Text String

| Sing String

| Tag String Html

| Html :+: Html
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instance Arbitrary Html where
arbitrary = oneof

[Text ⟨$⟩ arbitrary
, Sing ⟨$⟩ arbitrary
, Tag ⟨$⟩ arbitrary ⟨∗⟩ arbitrary
, (:+:) ⟨$⟩ arbitrary ⟨∗⟩ arbitrary]

Figure 4: Näıve type-driven random generator of Html values.

This type allows building pages via four possible constructions: Text

represents plain text values, Sing and Tag represent singular and paired HTML
tags, respectively, and (:+:) concatenates two HTML pages one after another.
These four constructions are known as data constructors (or constructors for
short) and are used to distinguish which variant of the ADT we are constructing.
Each data constructor is defined as a product of zero or more types known
as fields. For instance, Text has a field of type String, whereas the infix
constructor (:+:) has two recursive fields of type Html. When generating
random values, we will say that a data constructor with no recursive fields is
terminal, and non-terminal or recursive otherwise. Then, the example page:

<html>hello<hr>bye</html>

can be encoded using our freshly defined Html data type as:

Tag "html" (Text "hello" :+: Sing "hr" :+: Text "bye")

Later, suppose we implement two functions over Html values for simplifying
and measuring the size of an HTML page:

simplify :: Html→ Html

size :: Html→ Int

The concrete implementation of these functions is not relevant here. What is
important, though, is that with these functions in place, we might be interested
in asserting that simplifying an HTML page never returns a bigger one. This
can be encoded with the following QuickCheck property:

prop simplify :: Html→ Bool

prop simplify html =
size (simplify html) ⩽ size html

However, testing this property using random inputs is not possible yet.
The reason behind this is simple: QuickCheck does not know how to generate
random Htmls to instantiate this property’s input parameter. To solve this
issue, we can provide a user-defined Arbitrary instance for Html as shown
in Figure 4 (avoiding for simplicity the definition of shrink). To generate
a random Html value, this generator picks a random Html data constructor
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with uniform probability and proceeds to “fill” its fields recursively. This type-
driven definition implements the simplest generation procedure for Html that
is theoretically capable of generating any possible Html value.

After providing this concrete Arbitrary instance, QuickCheck can now
proceed to test properties involving Html values.

3 Automated Derivation of Generators

Although simple, writing the random generator defined in Figure 4 can be
quite tedious, so it is of no surprise that automated derivation mechanisms
[28], [29] have emerged to relieve the programmer of the burden of this task—
something especially valuable for large data types! Most of these tools use
Template Haskell [30], the Haskell meta-programming framework, which allows
one to examine the user code and synthesize new code based on it.

However, a suitable mechanism for deriving random generators cannot be
as simple as just producing code like the one shown in Figure 4. This näıve
generator is ridden with flaws, and QuickCheck users are often aware of them
when implementing random generators — even an unfamiliar but attentive
reader might have recognized them too. Concretely, to implement a suitable
random generator we need to consider (at least) the following challenges:

Unbounded Recursion: Every time a recursive subterm is needed, the
generator shown in Figure 4 calls itself recursively. This is a common mistake
that can lead to infinite generation loops due to recursive calls producing (on
average) one or more subsequent recursive calls. This problem can be more
or less severe depending mostly on the shape of the data type our generator
produces values of, being a practical limitation nonetheless. Fortunately,
QuickCheck already provides a simple mechanism to overcome this issue—this
is addressed by papers I-IV presented in this thesis.

Generation Parameters: The generator from Figure 4 picks the next
random constructor on a uniform basis. This is the simplest approach we
can mechanically follow but hardly the best choice in practice. In particular,
generating values of any data type with more terminal than recursive data
constructors using uniform choices will be biased towards generating very
small values. QuickCheck provides mechanisms for adjusting the generation
probability of each random choice it performs. However, doing so carries a
second problem: it becomes quite tricky to assign these probabilities without
knowing how they will affect the overall distribution of generated values —
something we later discovered to be a science on its own. Both problems are
addressed in detail in Paper II, where we use a stochastic model known as a
branching process to model, predict and optimize the generation process on
demand.

Abstraction Level: The generation process encoded in the generator shown
in Figure 4 constructs values using the smallest possible level of granularity:
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one data constructor at a time. In practice, this technique is often too weak
to generate (with a non-negligible probability) values containing the complex
patterns of constructors that could be required to test the corner cases of our
code, leaving the door open for subtle bugs that might never get triggered
within the testing budget.

On the other hand, the implementation of our code under test could rely
on internal invariants that are necessary to make it work properly — consider
for instance the case of the implementation of data structures like balanced
trees, where its abstract interface must preserve the internal invariants used
by their implementation. In this case, our testing properties will likely require
providing somewhat well-formed inputs as a precondition. Thus, testing this
kind of software becomes much more complicated using the approach described
above, as constructing random values one data constructor at a time will very
rarely produce values satisfying such preconditions. This issue is addressed in
detail in Paper III, where we first show how extra static information present
in the codebase can be used to generate better random data automatically
by including abstract interfaces and functions’ branching patterns in the mix.
Later, in Paper IV we show how this enhancement can be implemented with
modularity in mind in an elegant way using type-level programming. Using
this idea, different static sources of structural information can be combined to
generate data showing different lightweight invariants on a per-property basis.

4 Coverage Guided, Property-Based Testing

As described above, Papers I-IV contribute to the state-of-the-art of automatic
derivation of random data generators based on static information. These
generators are initially intended to be used with a black-box testing framework
such as QuickCheck, where they show a noticeable improvement with respect
to other existing automated techniques in certain real-world testing scenarios.

Being intentionally designed to follow a black-box approach, the only signal
QuickCheck gets back from running a test is whether it passes, fails or gets
discarded due to not passing the property’s precondition. This design choice
is in part what makes QuickCheck fast and easy to use. However, it also
entails that if our random generators (automatically derived or otherwise)
cannot generate data satisfying the sparse precondition of a testing property,
then QuickCheck has no other choice but to give up early. This led us to
believe that, regardless of the improvements we developed in the previous
papers, automatically derived generators can still be remarkably ineffective
when used to test properties with sparse preconditions if we limit ourselves to
black-box RPBT. Concretely, the main limitation of the black-box approach is
that neither the testing loop, the property nor the random generator can tune
their behavior dynamically based on feedback taken from the execution of the
system under test — a missed opportunity that the fuzzing community has
taken advantage of many times in the past.

If we accept moving away from QuickCheck, we can enhance its testing
loop with two key features to make it more flexible:
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• Target code instrumentation: to capture execution information from
each test case. For this, we instrument each branching point of the code
in the system under test with a small wrapper that logs its execution in
a global execution trace. This way, the testing loop can retrieve the path
in the code of the system under test taken by each test case.

• High-level, type-preserving mutations: to produce syntactically
valid test cases by altering existing ones at the data constructor level.
Similar to automatically derived generators, these mutations can also be
automatically computed by inspecting the data types used to represent
input test cases using meta-programming.

Relying on code instrumentation in tandem with mutations is a well-
established testing technique used outside of RPBT. Existing fuzzing tools use
execution traces to recognize interesting test cases, e.g, those that exercise pre-
viously undiscovered parts of the target code [3], [4], [31]–[33]. Moreover, given
a valid input test case, high-level, type-preserving mutations are a useful tool
for producing new valid input test cases from existing ones.

These two features are tied together using a mutation pool that stores
previously executed test cases. On one end, whenever a new test case discovers
a new portion of the code in the system under test, its corresponding value
is saved in the mutation pool. On the other end, values are drawn from this
pool and mutated to create a new test case similar to the original one. If the
mutation pool is empty, the testing loop simply generates a new random test
case and repeats the process. Figure 5 outlines a simplified representation of
this approach.

This technique was originally conceived by Lampropoulos et al. under the
name of Coverage-Guided, Property-Based Testing (CGPT). In their original
work, this technique leaves considerable room for improvement. Concretely,
we observed a large reliance on randomness, which in conjunction with its
simple, sub-par scheduling can prevent bugs from being found on a timely
basis. To tackle these issues, Paper VII introduces MUTAGEN, a novel CGPT

System
Under Test

MUTAGEN

Pass/Fail

Input

Property

Random
Generator

Counterexample

Mutation
Pool

Trace

Instrumentation

Figure 5: Coverage-Guided, Property-Based Testing with MUTAGEN.
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tool that addresses the main limitations of the original CGPT approach using
exhaustively computed mutations along with dynamic heuristics to improve its
scalability.

5 Domain-Specific Programming Language Tools

In addition to automated software testing, this thesis covers two contributions
to the state-of-the-art of domain-specific programming languages. This section
discusses how the ideas behind these contributions could be used to solve some
of the main problems this thesis aims to tackle.

5.1 Enhancing Embedded Domain-Specific Languages

Embedded Domain Specific Languages (EDSLs) are a useful approach to
developing custom programming languages tailored to specific requirements
without reinventing the wheel. Instead of having to manually implement lexers,
parsers, type-checkers, optimizers or code-generators, to name a few, EDSLs
can be designed to reuse some (or all) of these components from a host language.
In this setting, Haskell excels at hosting EDSLs given its powerful type system
and relatively extensible syntax, where its monadic do notation is extremely
powerful to implement complex EDSLs.

Despite their evident appeal, EDSLs are not without limitations. Perhaps
one of the most common ones is the lack of source metadata collected by earlier
stages of the compilation pipeline. For instance, parsers often collect useful
metadata that later compilation passes rely on to emit code or to generate
error messages. Understandably, most compilers would not make this metadata
available to the compiled program, GHC being no exception. This, in turn,
limits how expressive our Haskell EDSLs can be, as they cannot access useful
source-level details of the embedded programs such as source locations or
variable names.

To alleviate this problem, Paper V describes BinderAnn, a flexible plugin
for the GHC compiler that automatically inserts source code annotations into
the user’s monadic EDSL code. These annotations capture both the location
(i.e., line number and file name) of every EDSL statement, as well as any name
that the statement might be bound to (using the ← operator). Enabling our
EDSLs to use this (otherwise lost) information makes it possible to implement
better code-generating tools, as well as improve the quality of domain-specific
error messages.

We demonstrate using several examples how BinderAnn can be used to en-
hance existing EDSLs with source annotations, e.g, improving code-generation
(where variables names in the generated code reflect those used in the EDSL
code), as well as improving error messages (where EDSLs can guide the user
to domain-specific errors using source-level locations). Moreover, we showed
how EDSLs enhanced with source annotations can open the door for new pro-
gramming patterns. In particular, we demonstrate how BinderAnn can be an
instrumental tool to implement a simple interactive proof assistant.
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Using the BinderAnn approach, it could be possible automatically insert
source annotations into the system under test to guide the testing process
towards new kinds of goals. In this setting, there exist several fuzzing techniques
that take advantage of external information to direct their efforts towards
exercising specific parts of the code, e.g., to maximize the time spent on fuzzing
recent changes in the codebase or to target code that uses specific functions
or that has potential vulnerabilities [35]–[37]. In our case, we could instruct
a RPBT tool like MUTAGEN to use the extra source information added at
compile time to optimize the effort put into testing certain EDSL code more
effectively and at a higher level of abstraction — an interesting challenge to
tackle in the future.

5.2 Weakening the Type System

Continuing with the topic of embedded languages, we will now focus on a
specific kind: EDSLs that use Haskell’s type-level capabilities to enforce domain-
specific constraints. Perhaps the most remarkable example of this technique is
the existence of security libraries, where programmers can specify Information-
Flow Control policies in their programs by using type-level constraints to
denote the sensitivity of the data handled by them. These constraints are
checked along with the rest of the code, preventing the program to compile in
the presence of forbidden information flows.

Despite providing strong domain-specific guarantees, EDSLs relying on type-
level constraints often suffer from a lack of adoption. For instance, a reverse
dependency search for the most (academically) popular security libraries (e.g.,
MAC, LIO, HLIO, etc.) in Hackage returns fewer than five results combined.
We hypothesize that the extra friction added by using domain-specific type-level
constraints takes a toll on the usability of these EDSLs, where users must fully
abide by the language’s domain-specific quirks before an otherwise functionally
correct program can be even compiled. We argue that this all-or-nothing
paradigm can be improved by letting the programmer start by developing
functionally correct code, and then gradually tweak it until the domain-specific
constraints are met. This can be particularly useful in the case of security
libraries, where the programmer can progressively adapt their existing code to
satisfy the desired security policy, but checking that the functional correctness
of the program is also satisfied after each refactoring step — an approach akin
to that popularized by gradually typed languages.

To tackle this issue, Paper VI describes WRIT, a type-checking plugin for
the GHC compiler that weakens the type system to allow for certain ill-typed
programs to compile in a controlled way. The kind of programs that WRIT
allows GHC to compile are those that would otherwise compile just fine should
their type-level constraints were removed. In other words, WRIT allows GHC to
ignore type errors caused by unsolved runtime irrelevant constraints. We found
that, oftentimes, domain-specific constraints are irrelevant at runtime, having
no runtime representation, hence the compiler erases them completely during
compilation. This is commonly seen when using type-level tools like phantom
types and empty type classes. In such cases, WRIT allows the programmer to
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transform runtime irrelevant type errors into warnings to be addressed later.
Additionally, our plugin enables the EDSL designer to replace the generic error
messages GHC produces when there are unsolved type-level constraints with
specialized ones that refer to the concrete domain-specific constraint the client
code violates.

We showed how this approach can be used to write programs matching
a static IFC policy using the MAC library in a gradual manner and with
more descriptive error messages when something goes wrong. In addition, we
discussed how our approach can be extended to consider other scenarios when
unsolved constraints are not runtime-irrelevant, but there exists a mechanical
way to solve them by simulating dynamic typing as seen in other languages
like Python or Erlang.

Weakening the type system in our favor could be used to further automate
the testing process by dividing the complexity of generating test cases into
different steps. For instance, if we want to test a security library, we could
try to randomly generate programs using its abstract interface and verify
that its security guarantees are preserved. This might not be an easy task,
though. The type-level security constraints used by such a library might
be too hard to satisfy using an automatically derived (or even a manually
written) random generator [38], [39]. In turn, we could start by generating
weaker programs that compile albeit with potential security flaws. These
programs could be automatically lifted to use the library’s interface via the
WRIT plugin, generating security warnings in the process. Then, a subsequent
step could use the information encoded into these security warnings to try to
automatically “patch” their corresponding random programs into ones that
still use the library’s interface but compile without warnings. We believe
this multi-level technique for generating random test cases could be useful to
complement MUTAGEN’s mutation approach to overcome the complexity of
testing properties with complex security preconditions.





Chapter 2

Statement of contributions

This chapter lists the abstracts of the individual paper chapters and outlines
the personal contributions for each.

Paper I - QuickFuzz testing for fun and profit

Gustavo Grieco, Mart́ın Ceresa, Agust́ın Mista and Pablo Buiras

Abstract

Fuzzing is a popular technique to find flaws in programs using invalid or
erroneous inputs but not without its drawbacks. On one hand, mutational
fuzzers require a set of valid inputs as a starting point, in which modifications are
then introduced. On the other hand, generational fuzzing allows synthesizing
somehow valid inputs according to a specification. Unfortunately, this requires
to have a deep knowledge of the file formats under test to write specifications
of them to guide the test case generation process.

In this paper, we introduce an extended and improved version of QuickFuzz,
a tool written in Haskell designed for testing unexpected inputs of common file
formats on third-party software, taking advantage of off-the-self well known
fuzzers.

Unlike other generational fuzzers, QuickFuzz does not require to write
specifications for the files formats in question since it relies on existing file-
format-handling libraries available on the Haskell code repository. It supports
almost 40 different complex file types including images, documents, source code
and digital certificates.

In particular, we found QuickFuzz useful enough to discover many previously
unknown vulnerabilities in real-world implementations of web browsers and
image processing libraries among others.

17
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Contributions

This project was a collaboration between people from CIFASIS-Conicet and
Chalmers University of Technology. Agust́ın contributed to this project by
i) developing an extension to the existing generators’ derivation mechanism,
which contemplates the common case of existing libraries written using shallow
embeddings of the target file format; and ii) carrying out a complete rewrite of
the testing harness from scratch, maximizing the use of meta-programming to
ease the task of adding support for new file-format targets.

Moreover, Agust́ın collaborated with the writing of the journal paper
resulting from this project.

Paper II - Branching Processes for QuickCheck
Generators

Agust́ın Mista, Alejandro Russo and John Hughes

Abstract

In QuickCheck (or, more generally, random testing), it is challenging to control
random data generators’ distributions—especially when it comes to user-
defined algebraic data types (ADT). In this paper, we adapt results from an
area of mathematics known as branching processes, and show how they help
to analytically predict (at compile-time) the expected number of generated
constructors, even in the presence of mutually recursive or composite ADTs.
Using our probabilistic formulas, we design heuristics capable of automatically
adjusting probabilities in order to synthesize generators whose distributions
are aligned with users’ demands. We provide a Haskell implementation of our
mechanism in a tool called DRAGEN and perform case studies with real-world
applications. When generating random values, our synthesized QuickCheck
generators show improvements in code coverage when compared with those
automatically derived by state-of-the-art tools.

Contributions

This project was a collaboration with Alejandro Russo. Agust́ın was responsible
for i) developing a generic meta-programming mechanism for deriving random
generators using the stochastic model based on branching processes (the first
version of DRAGEN), and ii) designing and carrying out the evaluation of
these ideas, comparing the results of different generator derivation techniques
in terms of the code coverage observed when feeding real-world applications
with randomly generated inputs.

The technical writing of this paper was initially done in equal parts between
Alejandro and Agust́ın. John Hughes joined at a later stage with invaluable
feedback.
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Paper III - Generating Random Structurally Rich
Algebraic Data Type Values

Agust́ın Mista and Alejandro Russo

Abstract

Automatic generation of random values described by algebraic data types
(ADTs) is often a hard task. State-of-the-art random testing tools can auto-
matically synthesize random data generators based on ADTs definitions. In
that manner, generated values comply with the structure described by ADTs,
something that proves useful when testing software that expects complex in-
puts. However, it sometimes becomes necessary to generate structurally richer
ADTs values in order to test deeper software layers. In this work, we propose
to leverage static information found in the codebase as a manner to improve
the generation process. Namely, our generators are capable of considering how
programs branch on input data as well as how ADTs values are built via inter-
faces. We implement a tool, responsible for synthesizing generators for ADTs
values while providing compile-time guarantees about their distributions. Us-
ing compile-time predictions, we provide a heuristic that tries to adjust the
distribution of generators to what developers might want. We report on pre-
liminary experiments where our approach shows encouraging results.

Contributions

This project was a collaboration with Alejandro Russo. Agust́ın contributed
to this project by i) extending the previous derivation tool and its underly-
ing stochastic model with support for extracting and generating function pat-
terns and API calls automatically (this extension is called DRAGEN2); and
ii) designing and carrying out the evaluation of these ideas, comparing the
effects of including more static information when deriving random data gener-
ators versus using a simple type-directed derivation approach.

The technical writing of this paper was done in equal parts between Ale-
jandro and Agust́ın.

Paper IV - Deriving Compositional Random Gen-
erators

Agust́ın Mista and Alejandro Russo

Abstract

Generating good random values described by algebraic data types is often quite
intricate. State-of-the-art tools for synthesizing random generators serve the
valuable purpose of helping with this task, while providing different levels of
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invariants imposed over the generated values. However, they are often not
built for composability nor extensibility, a useful feature when the shape of
our random data needs to be adapted while testing different properties or sub-
systems.

In this work, we develop an extensible framework for deriving compositional
generators, which can be easily combined in different ways in order to fit
developers’ demands using a simple type-level description language. Our
framework relies on familiar ideas from the à la Carte technique for writing
composable interpreters in Haskell. In particular, we adapt this technique
with the machinery required in the scope of random generation, showing
how concepts like generation frequency or terminal constructions can also be
expressed in the same type-level fashion. We provide an implementation of our
ideas, and evaluate its performance using real-world examples.

Contributions

This project was a collaboration with Alejandro Russo. Agust́ın was responsible
for i) carrying out the technical development, using meta-programming and
type-level features available in Haskell to derive composable random data
generators; and ii) designing and evaluating these ideas, which focus on the
runtime overhead induced by the usage of composable random data generators.

The majority of the technical writing was done by Agust́ın. Alejandro
provided invaluable feedback throughout the process.

Paper V - BinderAnn: Automated Reification of
Source Annotations for Monadic EDSLs

Agust́ın Mista and Alejandro Russo

Abstract

Embedded Domain-Specific Languages (EDSLs) are an alternative to quickly im-
plement specialized languages without the need to write compilers or interpret-
ers from scratch. In this territory, Haskell is a prime choice as the host language.
EDSLs in Haskell, however, are often incapable of reifying useful static informa-
tion from the source code, namely variable binding names and source locations.
Not having access to variable names directly affects EDSLs designed to generate
low-level code, where the variables names in the generated code do not match
those found in the source code—thus broadening the semantic gap between
source and target code. Similarly, many existing EDSLs produce poor error mes-
sages due to the lack of knowledge of source locations where errors are generated.

In this work, we propose a simple technique for enhancing monadic EDSLs
expressed using do notation. This technique employs source-to-source plugins,
a relatively new feature of GHC, to annotate every do statement of our EDSLs
with relevant information extracted from the source code at compile time. We
show how these annotations can be incorporated into EDSL designs either
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directly inside values or as monadic effects. We provide BinderAnn, a GHC
source plugin implementing our ideas, and evaluate it by enhancing existing
real-world EDSLs with relatively minor modification efforts to contemplate the
source-level static information related to variables names and source locations.

Contributions

This project was a collaboration with Alejandro Russo. Agust́ın contributed to
this project by i) designing and implementing BinderAnn with support for mul-
tiple annotation styles based on valuable input from Alejandro, Koen Claessen
and John Hughes; and ii) evaluating these ideas, showing how BinderAnn could
solve existing real-world problems, as well as allowing for new programming
patterns to emerge.

The majority of the technical writing was done by Agust́ın. Alejandro
Russo provided invaluable feedback throughout the process.

Paper VI - Short Paper: Weak Runtime-Irrelevant
Typing for Security

Matth́ıas Páll Gissurarson and Agust́ın Mista

Abstract

Types indexed with extra type-level information are a powerful tool for stat-
ically enforcing domain-specific security properties. In many cases, this ex-
tra information is runtime-irrelevant, and so it can be completely erased at
compile-time without degrading the performance of the compiled code. In prac-
tice, however, the added bureaucracy often disrupts the development process,
as programmers must completely adhere to new complex constraints in order
to even compile their code.

In this work we present WRIT, a plugin for the GHC Haskell compiler
that relaxes the type-checking process in the presence of runtime-irrelevant
constraints. In particular, WRIT can automatically coerce between runtime
equivalent types, allowing users to run programs even in the presence of some
classes of type errors. This allows us to gradually secure our code while still
being able to compile at each step, separating security concerns from functional
correctness.

Moreover, we present a novel way to specify which types should be considered
equivalent for the purpose of allowing the program to run, how ambiguity at
the type level should be resolved and which constraints can be safely ignored
and turned into warnings.

Contributions

This project was a collaboration with Matth́ıas Páll Gissurarson, and the
result of a joint project for the course Language-Based Security led by Andrei



22 CHAPTER 2. STATEMENT OF CONTRIBUTIONS

Sabelfeld. Agust́ın contributed to this project by helping with the design of
the WRIT GHC plugin and its case studies.

The technical writing of this paper was done in equal parts between Matth́ıas
and Agust́ın.

Paper VII - MUTAGEN: Reliable Coverage-Guided,
Property-Based Testing using Exhaustive Muta-
tions

Agust́ın Mista and Alejandro Russo

Abstract

Automatically-synthesized random data generators are an appealing option
when using property-based testing. There exists a variety of techniques that
extract static information from the codebase to produce random test cases.
Unfortunately, such techniques cannot enforce the complex invariants often
needed to test properties with sparse preconditions.

Coverage-guided, property-based testing (CGPT) tackles this limitation by
enhancing synthesized generators with structure-preserving mutations guided
by execution traces. Albeit effective, CGPT relies largely on randomness and
exhibits poor scheduling, which can prevent bugs from being found.

We present Mutagen, a CGPT framework that tackles such limitations
by generating mutants exhaustively. Our tool incorporates heuristics that help
to minimize scalability issues as well as cover the search space in a principled
manner. Our evaluation shows that Mutagen not only outperforms existing
CGPT tools but also finds previously unknown bugs in real-world software.

Contributions

This project was a collaboration with Alejandro Russo. Agust́ın contributed to
this project by i) carrying out most of the technical development, with several
rounds of helpful feedback from Alejandro, Koen Claessen and John Hughes;
and ii) designing and performing the evaluation of these ideas, adapting existing
case studies with the assistance of Leonidas Lampropoulos.

The technical writing of this paper was done in equal parts between Ale-
jandro and Agust́ın, with invaluable feedback from John, Koen and Robert
Feldt.
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Abstract

Fuzzing is a popular technique to find flaws in programs using invalid or
erroneous inputs but not without its drawbacks. On one hand, mutational
fuzzers require a set of valid inputs as a starting point, in which modifications are
then introduced. On the other hand, generational fuzzing allows synthesizing
somehow valid inputs according to a specification. Unfortunately, this requires
to have a deep knowledge of the file formats under test to write specifications
of them to guide the test case generation process.

In this paper, we introduce an extended and improved version of QuickFuzz,
a tool written in Haskell designed for testing unexpected inputs of common file
formats on third-party software, taking advantage of off-the-self well known
fuzzers.

Unlike other generational fuzzers, QuickFuzz does not require to write
specifications for the files formats in question since it relies on existing file-
format-handling libraries available on the Haskell code repository. It supports
almost 40 different complex file types including images, documents, source code
and digital certificates.

In particular, we found QuickFuzz useful enough to discover many previously
unknown vulnerabilities in real-world implementations of web browsers and
image processing libraries among others.
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1 Introduction

Modern software is able to manipulate complex file formats that encode richly-
structured data such as images, audio, video, HTML documents, PDF docu-
ments or archive files. These entities are usually represented either as binary
files or as text files with a specific structure that must be correctly interpreted
by programs and libraries that work with such data. Dealing with the low-level
nature of such formats involves complex, error-prone artifacts such as pars-
ers and decoders that must check invariants and handle a significant number
of corner cases. At the same time, bugs and vulnerabilities in programs that
handle complex file formats often have serious consequences that pave the way
for security exploits [40].

How can we test this software? As a complement to the usual testing
process, and considering that the space of possible inputs is quite large, we
might want to test how these programs handle unexpected input.

Fuzzing [1], [12], [41] has emerged as a promising tool for finding bugs in
software with complex inputs, and consists in random testing of programs
using potentially invalid or erroneous inputs. There are two ways of producing
invalid inputs: mutational fuzzing involves taking valid inputs and altering
them through randomization, producing erroneous or invalid inputs that are fed
into the program; and generational fuzzing (sometimes also known as grammar-
based fuzzing) involves generating invalid inputs from a specification or model
of a file format. A program that performs fuzzing to test a target program is
known as a fuzzer.

While fuzzers are powerful tools with impressive bug-finding ability [3]–
[5], they are not without disadvantages. Mutational fuzzers usually rely on
an external set of input files which they use as a starting point. The fuzzer
then takes each file and introduces mutations in them before using them as test
cases for the program in question. The user has to collect and maintain this set
of input files manually for each file format she might want to test. By contrast,
generational fuzzers avoid this problem, but the user must then develop and
maintain models of the file format types she wants to generate. As expected,
creating such models requires deep domain knowledge of the desired file format
and can be very expensive to formulate.

In this paper, we introduce QuickFuzz, a tool that leverages Haskell’s
QuickCheck [42], the well-known property-based random testing library and
Hackage [43], the community Haskell software repository in conjunction with off-
the-shelf mutational fuzzers to provide automatic fuzz-ing for several common
file formats, without the need of an external set of input files and without
having to develop models for the file types involved. QuickFuzz generates
invalid inputs using a mix of generational and mutational fuzzing to try to
discover unexpected behavior in a target application.

Hackage already contains Haskell libraries that handle well-known image,
document, archive and media formats. We selected libraries that have two
important features: (a) they provide a data type T that serves as a lightweight
specification and can be used to represent individual files of these formats, and
(b) they provide a function to serialize elements of type T to write into files. In
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general, we call this function encode that takes a value of type T and returns a
ByteString. Using ready-made Hackage libraries as models save programmers
from having to write these by hand.

The key insight behind QuickFuzz is that we can make random values of
type T using QuickCheck’s generators, the specialized machinery for type-driven
random values generation. Then we serialize the test cases and pass them to
an off-the-shelf fuzzer to randomize. Such a mutation is likely to produce a
corrupted version of the file. Then, the target application is executed with the
corrupted file as input.

The missing piece of the puzzle is a mechanism to automatically derive the
QuickCheck generators from the definitions of the data types in the libraries,
which we call MegaDeTH .

Finally, if an abnormal termination is detected (for instance, a segmentation
fault), the tool will report the input producing the crash.

Thanks to Haskell implementations of file-format-handling libraries found
on Hackage, QuickFuzz currently generates and mutates a large set of different
file types out of the box. However, it is also possible for the user to add file
types by providing a data type T and the suitable serializing functions. Our
framework can derive random generators fully automatically, to be used by
QuickFuzz to discover bugs in new applications.

Although QuickFuzz is written in Haskell, we remark that it treats its
target program as a black box, giving it randomly generated, invalid files as
arguments. Therefore, QuickFuzz can be used to test programs written
in any language.

Our contributions can be summarized as follows:

• We present QuickFuzz, a tool for automatically generating inputs and
fuzzing programs parsing several common types of files. QuickFuzz uses
QuickCheck behind the scenes to generate test cases, and is integrated
with fuzzers like Radamsa, Honggfuzz and other bug-finding tools such
as Valgrind and Address Sanitizer.

• We release QuickFuzz1as open-source and free of charge. As far as we
know, QuickFuzz is the first fuzzer to offer the generation and mutation
of almost forty complex file types without requiring the user to develop
the models: just install, select a target program and wait for crashes!

• We introduce MegaDeTH , a library to derive random generators for
Haskell data types. MegaDeTH is fully automatic and capable of hand-
ling mutually recursive types and deriving instances from external mod-
ules. This library can be used to extend QuickFuzz with new data types.
Additionally, we describe the strategy adopted to improve the automated
derivation of random generators by using not only the information found
on a data type definition, but the one on its abstract interface as well.
Moreover, we detail and exemplify the technique used to enforce some

1The tool is available at https://github.com/CIFASIS/QuickFuzz.

https://github.com/CIFASIS/QuickFuzz
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semantic properties in the generation of source code. This is implemen-
ted in our tool for widely used programming languages like JavaScript,
Python and Lua among others.

• We evaluate the practical feasibility of QuickFuzz and show an extens-
ive list of security-related bugs discovered using QuickFuzz in complex
real-world applications like browsers, image-processing utilities and file
archivers among others.

This paper is a revised and extended version of [10] which appeared in
the Haskell Symposium 2016. This new version brings many theoretical and
experimental contributions.

First, we extended our tool with the improved random generators using the
information obtained from the abstract interface available for every library used.

Second, in the case of source code generation, we presented a technique to
enforce semantic properties immediately after the generation. We implemented
this approach using meta-programming, in order to improve the random code
generation of some widely used programming languages.

Third, we added three sets of experiments to explore how our tool generates
and mutates files. The related work section and the experiments comparing to
other fuzzers were also expanded to cover the latest developments in the field.

Finally, QuickFuzz now supports a greater number of file formats, including
complex file formats found in public key infrastructure such as ASN.1, X509
and CRT certificates. Using all the proposed extensions, we have found more
security-related bugs, updating our results and conclusion sections accordingly.

The rest of the paper is organized as follows. Section 2 introduces fuzzing
and the functional programming concepts useful to perform value generation.
Section 3 provides an overview of how QuickFuzz works using an example.
Section 4 discusses how to automatically derive random generators using
MegaDeTH . In Section 5 we highlight some of the key principles in the design
and implementation of our tool using the QuickCheck framework. Later, in
Section 6, we perform an evaluation of its applicability. Section 7 presents
related work and Section 8 concludes.

2 Background

2.1 Fuzzers

Fuzzers are popular tools to test how a program handles unexpected input.
There are two approaches for fuzzing [15]: mutational and generational.

Mutational Fuzzers These tools produce inputs for testing programs taking
valid inputs and altering them through randomization, producing erroneous or
invalid inputs that are fed into the program. Typically they work by producing
a random mutation at the bit or byte level.

Nowadays, there are plenty of robust and fast mutational fuzzers. For
instance, zzuf [7] is a fuzzer developed by Caca Labs that produces mutations
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in the program input automatically hooking the functions to read from files
or network interfaces before a program is started. When the program reads
an input, zzuf randomly flips a small percentage of bits, corrupting the data.
Another popular mutational fuzzer is radamsa [5]. It was developed by the Oulu
university secure programming group and works at the byte level randomly
adding, removing or changing complete sequences of bytes of the program input.
It features a large amount of useful mutations to detect bugs and vulnerabilities.

Both radamsa and zzuf are dumb mutation fuzzers since they do not use
any feedback provided by the actual execution of the program to test. In
the last few years, feedback-driven mutational fuzzers such as american fuzzy
lop [3] and honggfuzz [4] were developed. These fuzzers use lightweight program
instrumentation to collect information of every execution and use it to guide
the fuzzing procedure.

While mutational fuzzers are one of the simpler and more popular types of
fuzzers to test programs, they still require a good initial corpus to mutate in
order to be effective.

Generational Fuzzers These tools produce inputs for testing programs
generating invalid or unexpected inputs from a specification or model of a file
format.

This type of fuzzers are also popular in testing. For instance, one of the most
mature and commercially supported generational fuzzers is Peach [6]. It was
originally written in Python in 2007, and later re-written in C# for the latest
release. It provides a wide set of features for generation and mutation, as well as
monitoring remote processes. However, in order to start fuzzing, it requires the
specification of two main components to generate and mutate program inputs:

• Data Models: a formal description of how data is composed in order to
be able to generate fuzzed data.

• Target: a formal description of how data can be mutated and how to
detect unexpected behavior in monitored software.

As expected, the main issue with Peach is that the user has to write these
configuration files, which requires very specific domain knowledge. Another
option is Sulley [44], a fuzzing engine and framework in Python. It is frequently
presented as a simpler alternative to Peach since the model specification can be
written using Python code. A more recent alternative open-sourced by Mozilla
in 2015 is Dharma [8], a generation-based, context-free grammar fuzzer also in
Python. It also requires the specification of the data to generate, but it uses a
context-free grammar in a simple plain text format.

In recent years, tools like AUTOGRAM [45] and GLADE [46] helped to
learn and synthesize inputs grammars to test programs. These tools start from
valid input files and using the analyzed program itself, they approximate the
input grammar. AUTOGRAM uses dynamic taint analysis to synthesize the
input grammar while GLADE executes the program as an oracle to answer
membership queries (i.e., whether a given input is valid). Later such grammars
can be used as models in generational fuzzers [46].
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2.2 Haskell

Haskell is a general-purpose purely-functional programming language [47]. It
provides a powerful type system with highly-expressive user-defined algebraic
data types. With the power to precisely constrain the values allowed in a
program, types in Haskell can serve as adequate lightweight specifications.

Data Types Data types in Haskell are defined using one or more constructors.
A constructor is a tag that represents a way of creating a data structure and it
can have zero or more arguments of any other type.

For instance, we can define the List a data type representing lists of values
of type a by using two constructors: Nil represents the empty list, while Cons

represents a non-empty list formed by combining a value of type a and a list
(possibly empty) as a tail. Note that this is a recursive type definition:

data List a = Nil | Cons a (List a)

As an example, we define a few functions that we are going to use in the
rest of this work:

length :: List a→ Int

length Nil = 0

length (Cons x xs) = 1 + length xs

snoc :: a→ List a→ List a

snoc x Nil = Cons x Nil

snoc x (Cons y ys) = Cons y (snoc x ys)

reverse :: List a→ List a

reverse Nil = Nil

reverse (Cons x xs) = snoc x (reverse xs)

The function length computes the length of a given list, snoc adds an
element at the end of the list and finally reverse reverses the entire list.
Their definitions are straightforward applications of pattern-matching and
recursion. Free type variables in types, such as a above, are implicitly universally
quantified.

Type Classes Haskell provides a powerful overloading system based on the
notion of a type class. Broadly speaking, a type class is a set of types with a
common abstract interface. The functions defined in the interface are said to
be overloaded since they can be used on values of any member of the type class.
In practice, membership in a type class is defined by means of an instance, i.e.
a concrete definition of the functions in the interface specialized to the chosen
type. For example, Haskell includes a built-in type class called Eq which defines
the equality relation (==) for a given type. Assuming that a is in the Eq type
class, we can define an instance of Eq for List a:
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instance Eq a⇒ Eq (List a) where
Nil == Nil = True

(Cons x xs) == (Cons y ys) = (x == y) ∧ (xs == ys)
== = False

Note that the (==) operator is used on two different types: in the expression
x == y it uses the definition given in the instance for Eq a (equality on a),
while in the expression xs == ys it is a recursive call to the (==) operator
being defined (equality on List a). Haskell uses the type system to dispatch
and resolve this overloading.

Applicative Functors In this work, we use a well-known abstraction for
structuring side-effects in Haskell, namely applicative functors [48]. Haskell
being a pure language means that all function results are fully and uniquely
determined by the function’s arguments, in principle leaving no room for effects
such as random-number generation or exceptions, among others. However,
such effects can be encoded in a pure language by enriching the output types
of functions, e.g. pseudo-random numbers could be achieved by explicitly
threading a seed over the whole program. Applicative functors are one of the
ways in which we can hide this necessary boilerplate to implement effects.

Applicative functors in GHC are implemented as a type class. In order to
define an applicative functor one has to provide definitions of two functions,
pure and (⟨∗⟩), with the types given below.

class Applicative p where
pure :: a→ p a

(⟨∗⟩) :: p (a→ b)→ p a→ p b

The function pure inserts pure values into the applicative structure (the
boilerplate), and (⟨∗⟩) gives us a way to “apply” a function inside the structure
to an argument. Due to overloading, computations written using this interface
can be used with any applicative effect.

For example, assume that we have a function (+) :: Int → Int → Int

that adds two numbers, and that we have a type RNG with an instance
Applicative RNG that represents random-number generation, and moreover,
that there is a value gen :: RNG Int that produces a random Int. We can ex-
press a computation that adds two random numbers using the applicative in-
terface as follows: pure (+) ⟨∗⟩ gen ⟨∗⟩ gen. This expression has type RNG Int

(which can be read as “an Int produced potentially from random data”), and
it can be further used in other applicative computations as needed.

Hackage This work draws on packages found in Hackage. Hackage is the
Haskell community’s central package archive. As we will explain, we take from
this archive the data types used to generate different file formats. For instance,
the JuicyPixels library is available in Hackage [49], and it has support for
reading and writing different image formats.
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Hackage is a fundamental part of QuickFuzz, since it provides lightweight
specifications for free and we carefully designed QuickFuzz to easily include
new formats as they appear in this code repository.

2.3 QuickCheck

QuickCheck is a tool that aids the programmer in formulating and testing
properties of programs, first introduced as a Haskell library by Koen Claessen
and John Hughes [42]. QuickCheck presents mechanisms to generate random
values of a given type, as well as a simple language to build new generators and
specify properties in a modular fashion. Once the generators have been defined,
the properties are tested by generating a large amount of random values.

Properties To use this tool, a programmer should define suitable properties
that the code under test must satisfy. QuickCheck defines a property basically
as a predicate, i.e. a function that returns a boolean value. For instance, we
can check if the size of a list is preserved when we reverse it:

prop reverseSize :: List a→ Bool

prop reverseSize xs = length xs == length (reverse xs)

QuickCheck will try to falsify the property by generating random values of
type List a until a counterexample is found.

Generators QuickCheck requires the programmer to implement a gener-
ator for List a in order to test properties involving such data type, like
prop reverseSize above. The tool defines an applicative functor Gen and a
new type class called Arbitrary for the data types whose values can be gener-
ated. Its abstract interface consists solely of a function that returns a generator
for the data type a being instantiated. The applicative functor Gen provides
the required mechanisms to generate random values. As seen in the previous
subsection, effectful behavior requires an applicative structure:

class Arbitrary a where
arbitrary :: Gen a

Then it is up to the programmer to define a proper instance of Arbitrary
for List a using the tools provided by QuickCheck:

instance Arbitrary a⇒ Arbitrary (List a) where
arbitrary = genList

where
genList = oneof [genNil, genCons ]
genNil = pure Nil

genCons = pure Cons

⟨∗⟩(arbitrary :: Gen a)
⟨∗⟩(arbitrary :: Gen (List a))
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The function oneof chooses with the same probability between a Nil value
generator or a Cons value generator. Note that genCons calls to arbitrary

recursively in order to get a generated List a for its inner list parameter.
However, the previous implementation has a problem; it is possible for

oneof to always choose a genCons, getting the computation in an endless loop.
To solve this, QuickCheck provides tools to limit the maximum value generation
size. An improved implementation uses the size-dependent functions sized

and resize, which take care of the maximum generation size, decreasing it
after every recursive step. When the size reaches zero, the generation always
returns Nil, ensuring that the value construction process never gets stuck in
an infinite loop. The generation size is controlled externally and is represented
in this case by the n parameter.

instance Arbitrary a⇒ Arbitrary (List a) where
arbitrary = sized genList

where
genList n = oneof [genNil, genCons n]
genNil = pure Nil

genCons 0 = genNil

genCons n = pure Cons

⟨∗⟩(resize (n− 1) arbitrary :: Gen a)
⟨∗⟩(resize (n− 1) arbitrary :: Gen (List a))

Using this instance, QuickCheck can properly generate arbitrary values of
List a and test properties using them:

quickCheck prop reverseSize

And if the test passed for all the randomly generated values, QuickCheck will
answer:

++++ OK, passed 100 tests

3 A Quick Tour of QuickFuzz

In this section, we will show QuickFuzz in action with a simple example. More
specifically, how to discover bugs in giffix, a small command line utility from
giflib [50] that attempts to fix broken Gif images. Our tool has built-in support
for the generation of Gif files using the JuicyPixels library [49].

In order to find test cases to trigger bugs in a target program, our tool only
requires from the user:

• A file format name to generate fuzzed inputs

• A command line to run the target program

It is worth mentioning that no instrumentation is required to run the target pro-
gram. For instance, to launch a fuzzing campaign on giffix, we simply execute:
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$ QuickFuzz Gif ’giffix @@’ -a radamsa -s 10

Our tool replaces @@ by a random filename that will represent the fuzzed
Gif file before executing the corresponding command line. The next parameter
specifies the mutational fuzzer it uses (radamsa in this example) and the last one
is the abstract maximum size in the Gif value generation. Such limitation will
effectively bound the memory and the CPU time used during the file generation.

After a few seconds, QuickFuzz stops since it finds an execution that fails
with a segmentation fault. At this point, we can examine the output directory
(outdir by default) to see the Gif file produced by our tool that caused giffix
to fail.

Figure 1 shows the QuickFuzz pipeline and architecture. An execution of
QuickFuzz consists of three phases: high-level fuzzing, low-level fuzzing and
execution. The diagram also shows the interaction between the compile-time
and the run-time of QuickFuzz. Let us take a look at what happens in each
phase in the giffix example.

3.1 High-Level Fuzzing

During this phase, QuickFuzz generates values of the data type T that represents
the file format of the input to the target program. It relies on the tools provided
by QuickCheck. More specifically, the random number generation tools that can
be used to construct randomized structured data in a compositional manner.
In our example this representation type T (borrowed from JuicyPixels) is called
GifFile.

data GifFile = GifFile Header Images Looping

data Looping

= LoopingNever

| LoopingForever
| LoopingRepeat Int

A GifFile contains a header (of type Header), the raw bitmap images (of
type Images), and a looping behavior (of type Looping), specified by three type

Figure 1: Summary of the random generators deriving using MegaDeTH at
compile-time and the test case generation using QuickFuzz at run-time where
gray nodes represent inputs provided by a user and bold nodes represent
outputs.
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constructors denoting the possible behaviors. We left Header and Images data
types unspecified for the sake of the example. Note that randomly generated
elements of type GifFile might not be valid Gif files, since the type system is
unable to encode all invariants that should hold among the parts of the value.
For example, the header might specify a width and height that doesn’t match
the bitmap data. For this reason, we consider that this step corresponds to
generational fuzzing, where the data type definition serves as a lightweight
approximate model of the Gif file format which generates potentially invalid
instances of it.

After generating a value of type GifFile with QuickCheck, we use the
encode function for this file type to serialize the GifFile into a sequence of
bytes, which is written into the output directory for further inspection by the
user. Finally, the result of this phase is a Gif image, most likely corrupted.

3.2 Low-Level Fuzzing

Usually the use of high-level fuzzing produced by the values generated by
QuickCheck is not enough to trigger some interesting bugs. Therefore, this
phase relies on an off-the-shelf mutation fuzzer to introduce errors and mutations
at the bit level on the ByteString produced by the previous step. In particular,
the current version supports the following fuzzers:

• Zzuf: a transparent application input fuzzer by Caca Labs [7].

• Radamsa: a general-purpose fuzzer developed by the Oulu University
Secure Programming Group [5].

• Honggfuzz: a general purpose fuzzer developed by Google [4].

One of the key principles of the design of QuickFuzz was to require no para-
meter tuning in the use of third-party fuzzers and bug-detection tools. Usually,
the use of mutational fuzzers requires fine-tuning some critical parameters. In-
stead, we decided to incorporate default values to perform an effective fuzzing
campaign even without fine-tuning values like mutation rates.

After this phase, the result will be a very corrupted Gif file thanks to the
combination of high-level and low-level fuzzing.

3.3 Execution

The final phase involves running the target program with the mutated file as
input and check if it produces an abnormal termination. For each test case
file producing a runtime failure, we can also find in the output directory the
intermediate values for each step of the process:

• A text file with the printed value generated by QuickCheck

• The test case file before the mutation by the mutational fuzzer

• The actual mutated test case file which was passed as input to the target
program and resulted in failure
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Using this information, developers can examine how the test case file was
corrupted in order to understand why their program failed and how it can be
fixed.

After corrupting a few Gif files, QuickFuzz finds a test case to reproduce
a heap-based overflow in giffix (CVE-2015-7555). This issue is caused by the
lack of validation of the size of the logical screen and the size of the actual Gif
frames. In fact, if we run the tool for no more than 5 minutes in a single core,
we will obtain dozens of test cases triggering failed executions (crashes and
aborts). Crash de-duplication is currently outside the scope of our tool, so we
manually checked the backtraces using a debugger and determined that giffix
was failing in 3 distinctive ways.

The root cause of such crashes can be the same, for instance, if the program
is performing a read out-of-bounds. Nevertheless, QuickFuzz can still obtain
valuable information by finding different crashes associated with the same issue:
they can be very useful to determine if the original issue is exploitable or not.

Additionally, QuickFuzz can use Valgrind [51] and Address Sanitizer [52]
to detect more subtle bugs like a read out-of-bounds that would not cause a
segmentation fault or the use of uninitialized memory.

4 Automatically Deriving Random Generators

In this section we explain the compilation-time stage of QuickFuzz, that can
be separated into three methodologies depending on how the file format was
implemented, and which file format is in order to enforce information not coded
in the library:

• Automatically deriving Arbitrary instances for target file formats data
types. Explained in subsection 4.1.

• Crawling libraries interfaces related to the generation of the target file
formats, and then, generating a higher level structure that represents
manipulations of values using those interfaces. Explained in subsection
4.2.

• Post-processing the arbitrarily generated values to enforce specific se-
mantic properties. In particular, we use such a technique to improve
source code generation. Explained in subsection 4.3.

The last two stages are not required for every file format generation and
fuzzing, however, they improve the variety of generated values as discussed on
their respective subsections.

4.1 MegaDeTH

Mega Derivation TH (MegaDeTH ) is a tool that gives the user the ability to
provide class instances for a given type, taking care to provide suitable class
instances automatically. As an example, we will analyze the GifFile data type:
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data GifFile = GifFile Header Images Looping

data Looping

= LoopingNever

| LoopingForever
| LoopingRepeat Int

In order to define an Arbitrary instance for GifFile, the programmer has
to define such instances for Header, Images and Looping as well. We will refer
to GifFile as our target data type, since it is the top-level data type we are
looking to generate. Also, we will refer to Header, Images and Looping as the
nested data types of GifFile. If any of these data types define further nested
data types, this process has to be repeated until every data type involved in
the construction of GifFile is a member of the Arbitrary type class.

Since Haskell benefits the practice of defining custom data type in an
algebraic way, a data type definition can be seen as a hierarchical structure.
Hence, deriving Arbitrary instances for every data type present at the hierarchy
can be a repetitive task. MegaDeTH offers a solution to this problem: it gives
the user a way to thoroughly derive instances for all the intermediate data
types that are needed to make the desired data type instance work.

MegaDeTH was implemented using Template Haskell [30], a meta-programming
mechanism built into GHC that is extremely useful to process the syntax tree
of Haskell programs and to insert new declarations at compilation time. We use
the power of Template Haskell to extract all the nested types for a given type
and derive a class instance for each one of them, finally instantiating the top-
level data type. Since Haskell gives the user the possibility of writing mutually
recursive types, MegaDeTH implements a topological sort to find a suitable
order in which to instantiate each data type satisfying their type dependencies.

We can simply derive all the required instances using MegaDeTH ’s function
devArbitrary that automatically generates the following instances (among
others), simplified for the sake of understanding:

instance Arbitrary Looping where
arbitrary = sized gen

where
gen n = oneof

[pure LoopingNever

, pure LoopingForever

, pure LoopingRepeat

⟨∗⟩(resize (n− 1) arbitrary :: Gen Int)
]

instance Arbitrary GifFile where
arbitrary = sized gen

where
gen n = pure GifFile

⟨∗⟩(resize (n− 1) arbitrary :: Gen Header)
⟨∗⟩(resize (n− 1) arbitrary :: Gen Images)
⟨∗⟩(resize (n− 1) arbitrary :: Gen Looping)
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As we can see, the derived code reduces the size whenever a type constructor
is used and select which one is to be used with QuickCheck’s oneof function.
These automatically generated random generators follow directly the ideas
presented in Section 4, that is to choose between all the available constructors
and generate the required arguments of it.

However, it is not always the case that we can choose between available
constructors in order to generate rich structured values. We explore the
limitations of this approach in further detail. The next example introduces
a different manner to define a data type which exploits the limitations of
MegaDeTH , and serves as an introduction to the solution.

Designing an Html Manipulating Library One of the main decisions
involved when designing a domain-specific language [53] (DSL) manipulation
library is the level of embedding this DSL will have. The most common ap-
proaches are deep embedding and shallow embedding [54]. Deeply-embedded
DSLs usually define an internal intermediate representation of the terms this
language can state, along with functions to transform this intermediate repres-
entation forth and/or back to the target representation. In this kind of em-
bedding, the domain-specific invariants are mainly preserved by the internal
representation. The previously presented GifFile data type is an example of
this technique. On the other hand, shallow-embedded DSLs often use a sim-
pler internal representation, leading the task of preserving the domain-specific
invariants to the functions at the library abstract interface.

Since HTML is a markup language, it is essentially comprised of plain text.
Hence, instead of defining a complex data type using a different type constructor
for each HTML tag, the library designer could be tempted to use a shallow
embedding representation, employing the same plain-text representation for
the library’s internal implementation:

module Html where

type Html = String

head :: Html→ Html

body :: Html→ Html

div :: Html→ Html

hruler :: Html
(⟨+⟩) :: Html→ Html→ Html

toHtml :: String→ Html

renderHtml :: Html→ ByteString

In the definition above, the Html data type is a synonym to the String

data type. Thus, the functions on its abstract interface are basically String

manipulating functions with the implicit assumption that if they take a correct
HTML, they will return a correct HTML, for instance:

head :: Html→ Html

head hd = "<head>" ++ hd ++ "</head>"
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hruler :: Html
hruler = "</hr>"

(⟨+⟩) :: Html→ Html→ Html

h1 ⟨+⟩ h2 = h1 ++ h2

Given that our guide in the derivation of random generators is the data
type, MegaDeTH needs it to be structurally complex in order to generate
complex data, remember that we based our generators on the assumption that
we can choose with the same probability between different constructors in order
to generate random values. If we derive a random generator for the given Html

data type, its type definition does not provide enough structure to generate
useful random values. Instead, the generated Arbitrary instance delegates
this task to such an instance of the String data type:

instance Arbitrary Html where
arbitrary = (arbitrary :: Gen String)

The resulting Html values generated by this Arbitrary instance are just
random strings, which rarely represent a valid Html value. Therefore, these
kinds of generators are useless for our purpose of discovering bugs on complex
software parsing markup languages such as HTML.

This approach to defining libraries is common to find in the wild, being
blaze-html [55] or language-css [56] some examples of this. Instead of discarding
them, the next subsection introduces a different approach we took to derive
powerful Arbitrary instances for these kinds of libraries.

4.2 Encoding Functions’ Information into Actions

Haskell’s expressive power allows the library programmer to define a file format
representation as a custom data type in several ways. As we have seen previously,
MegaDeTH derive useful Arbitrary instances when the programmer had
encoded invariants directly in the data type. On the other hand, as we have
seen in the previous subsection, those invariants can be forced in the operations
declared in the data type abstract interface. These operations manipulate the
values of the data type, transforming well-formed values into well-formed results.

Since we need data type constructors to be able to use MegaDeTH , we use
the concept of Actions [57]. Given a type T we can look up all the functions
that return a T value and think of them as a way to create a new T value and
call these functions actions. Henceforth, we can define a new data type where
each function that creates a T value defines a constructor in this new type. In
general, for a given data type we will refer to its actions-oriented data type by
simply as its actions data type.

In order to illustrate this technique, we will reuse the Html manipulating
library example defined in the previous subsection:

module Html where

type Html = String
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To build a complex Html document, the programmer should use the func-
tions defined in the abstract interface of this module. For example, a simple
Html document could be represented as follows:

myPage :: Html
myPage =
head (toHtml "my head")
⟨+⟩ body (div (toHtml "text")

⟨+⟩ hruler
⟨+⟩ div (toHtml "more text"))

The Html actions data type can be automatically generated, where each
constructor represents a possible action over the original data type, whose type
parameters corresponds to the ones at the original function this action intends
to express. Note that, if an action has a parameter that comprises the original
data type, it is replaced by its actions-oriented one, making this a recursively
defined data type.

data HtmlAction

= Action head HtmlAction

| Action body HtmlAction

| Action div HtmlAction

| Action hruler

| Action toHtml String

| Action + HtmlAction HtmlAction

Note that renderHtml will play the role of the encoding function in our
representation, since it gives us a way to serialize Html values. Also, is worth
mentioning that it is not included as an action since it does not return an Html

value.
The previous value could be encoded using actions as follows:

myPageActions :: HtmlAction
myPageActions =

(Action head (Action toHtml "my head"))
`Action +̀

(Action body

((Action div (Action toHtml "text")
`Action +̀

Action hruler)
`Action +̀

Action div (Action toHtml "more text")))

Once an actions data type is derived for a given data type, a value of its
type describes a particular composition of functions that returns a value of the
original data type. Hence, we need a function performHtml that performs an
action using the underlying implementation of the interface functions, returning
corresponding values of the original type.
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performHtml :: HtmlAction→ Html

performHtml (Action head v) = head (performHtml v)
performHtml (Action body v) = body (performHtml v)
performHtml (Action div v) = div (performHtml v)
performHtml Action hruler = hruler

performHtml (Action toHtml v) = toHtml v

performHtml (Action + v1 v2) =
(performHtml v1) ⟨+⟩(performHtml v2)

Writing the action data type for common target data types is usually an
straightforward task. A similar approach was taken in [18] in order to manually
derive random generators for a particular data type of interest. However, this
task also becomes repetitive, especially when the target data type contains
several functions on its abstract interface. That is the reason why we automate
this process by using Template Haskell. The function devActions is responsible
for this, generating at compile time the actions data type and the performing
function for a target data type. This process can be described as follows:

Step 1. Crawl the modules where the target data type is present, extracting
all type constructors and function declarations.

Step 2. Find any declarations that return a value of the target data type.
Each one will become a type constructor at the actions data type.

Step 3. Generate the actions data type and the performing function for the
target data type by using the previously obtained actions.

Once the actions data type and performing function have been generated for
a given target data type, it is possible to use MegaDeTH to obtain an Arbitrary

instance for the actions data type, and then, we can obtain such instance for
the target data type by simply performing an arbitrary value of the first one:

instance Arbitrary Html where
arbitrary = pure performHtml

⟨∗⟩(arbitrary :: Gen HtmlAction)

We found this actions-oriented approach to be a convenient way to deal with
Haskell libraries with no restrictive type definitions, wrapping their interfaces
with a higher level structure and deriving suitable Arbitrary instances for
them. Given that, it is possible to define useful Arbitrary instances for a
variety of target data types based on the abstractions defined by the library
writer, regardless of how the library was implemented.

There are limitations related to the generation of the actions data type.
One of them involves definitions using complex types wrapping the target data
type. For instance, suppose we extend the Html module by adding a function
for splitting Html values:

split :: Html→ (Html, Html)
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The result type for split does not match the target data type. However,
we would like to translate it into an action as well, since the target data type
(Html) is somehow wrapped by its result type ((Html, Html)). In order to
translate split into an action, we need to know beforehand how to extract
the target data type values from the wrapped value.

Another limitation is related to the special treatment required by poly-
morphic function definitions. Remember the definition of the polymorphic data
type List a which represents a list of elements of type a, where a could be any
data type:

data List a = Nil | Cons a (List a)

We can define the following polymorphic functions for all a.

append :: a→ List a→ List a

concat :: List a→ List a→ List a

Our current approach can only handle non-polymorphic functions. We use
a naive workaround to solve this consisting of instantiating every polymorphic
function at the abstract interface of a module into non-polymorphic ones. This
instantiation process is driven by the user, who decides which data types are
interesting enough to be replaced. For instance, if the user decides to instantiate
the previous list-handling functions with Int and String data types, our tool
generates the following functions:

append 1 :: Int→ List Int→ List Int

append 2 :: String→ List String→ List String

concat 1 :: List Int→ List Int→ List Int

concat 2 :: List String→ List String→ List String

Then, these instantiated functions are treated like any other non-polymorphic
ones at the stage of deciding which ones will be used as actions.

4.3 Enforcing Variable Coherence

Using the previously explained machinery, our tool can randomly generate
source code from various programming languages such as Python, JavaScript,
Lua and Bash. The generation process relies on the type representing the
abstract syntax tree (AST) of the code of each language.

Unfortunately, we found that automatically derived generators for such
languages are not always effective at the generation of complex test cases, since
they cannot account for all the invariants required for source code files to be
semantically correct. In particular, one of the things that random code cannot
account for is variable coherence, i.e., when we use a variable, it has to be
defined (or declared).

We can see in the example below that QuickFuzz generates a complete
program with variables and assignments but without any sense or coherence
between them. For example, the following program is rejected by any compiler
within one of the first passes.
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rpa = kk
meg = −18.3 == p
i z e = l e

In order to tackle this issue, we developed a generic technique to enforce
properties in the resulting generated values (in this case, Python code). In
particular, our goal is to correct generated source code as a first step to use
QuickFuzz to test compilers and interpreters in deep stages of the parsing and
executing process.

While there are some tools to test compilers, for instance, CSmith [58] for
stressing C compilers, they are specific tools developed for certain languages.
Our approach is different, since we aim to develop a general technique that
works in different complex languages provided some general guidance.

In this work, we decided to enforce variable coherence by making some
corrections in the freshly generated test case. QuickFuzz goes through its AST
collecting declared variables in a pool of variables identifications and changing
unknown variables for previously declared ones arbitrarily taken from that pool.
The special case when the pool is empty and a variable is required is sorted by
generating an arbitrary constant expression.

As a result, we get programs where every variable used is already defined
before it is used.

rpa = 4
meg = −18.3 == rpa
i z e = meg

As we have seen in this section, it is possible to enforce user knowledge not
encoded in either the type nor the library of a desired source code. It is also
worth noting that this approach is as general as it can be. Therefore, we can
implement complex invariants based on how we want to post-process the AST
with all the information this structure provides.

5 Detecting Unexpected Termination of Pro-
grams

This section details how we defined suitable properties in QuickCheck to perform
the different phases of the fuzzing process and detect unexpected termination
of programs.

Detecting Unexpected Termination in Programs In Haskell, a program
execution using certain arguments can be summarized using this type:

type Cmd = (FilePath, [String ])

First, we defined the notion of a failed execution. In our tool a program
execution fails if we detect an abnormal termination. According to the POSIX.1-
1990 standard, a program can be abnormally terminated after receiving the
following signals:
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• A SIGILL when it tries to execute an illegal instruction

• A SIGABRT when it called abort

• A SIGFPE when it raised a floating point exception

• A SIGSEGV when it accessed an invalid memory reference

• A SIGKILL at any time (usually when the operating system detects it is
consuming too many resources)

After a process finishes, it is possible to detect signals associated with failed
executions by examining its exit status code. Traditionally in GNU/Linux
systems a process that exits with a zero exit status has succeeded, while a
non-zero exit status indicates failure. When a process terminates with a signal
number n, a shell sets the exit status to a value greater than 128. Most of
the shells use 128 + n. We capture such a condition in the Haskell function
has failed, in order to catch when a program finished abnormally:

has failed :: ExitCode→ Bool

has failed (ExitFailure n) = (n<0 ∨ n > 128) ∧ n ̸≡ 143

has failed ExitSuccess = False

We only excluded SIGTERM (with exit status of 143) since we want to
be able to use a timeout in order to catch long executions without considering
them failed.

High-Level Fuzzing Properties In order to use QuickCheck to uncover
failed executions in programs, we need to define a property to check. Given
an executable program and some arguments, QuickFuzz tries to verify that
there is no failed execution as we defined above for arbitrary inputs. We call
this property prop NoFail. It serializes inputs to files and executes a given
program. Its definition is very straightforward:

prop NoFail :: Cmd→ (a→ ByteString)→ FilePath→ a→ Property

prop NoFail pcmd encode filename x = do
run (write filename (encode x))
ret← run (execute pcmd)
assert (¬ (has failed ret))

After that, we can QuickCheck the property of no-failed executions instan-
tiating prop NoFail with suitable values. For instance, let us assume we want
to test the conversion from Gif to Png images using ImageMagick. The usual
command to achieve this would be:

$ convert src.gif dest.png

In terms of prop NoFail, to test the command above we call the QuickCheck
function using the following property:
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let cmd = ("convert", ["src.gif", "dest.png"])
in prop NoFail cmd encodeGif "src.gif"

where encodeGif is a function to serialize GifFiles. Finally, QuickCheck will
take care of the GifFile generation, reporting any value that produces a failed
assert in prop NoFail.

Low-Level Fuzzing Properties In the next phase of the fuzzing process, we
enhance the value generation of QuickCheck with the systematic file corruption
produced by off-the-shelf fuzzers. Intuitively, we augment prop NoFail with a
low-level fuzzing procedure abstracted as a call to the fuzz function.

fuzz :: Cmd→ FilePath→ IO ()

After calling fuzz, the content of a file will be changed somehow. Using
this new function, we define a new property called prop NoFailFuzzed which
mutates the serialized file before the execution takes place:

prop NoFailFuzzed :: Cmd→ Cmd→ (a→ ByteString)
→ FilePath→ a→ Property

prop NoFailFuzzed pcmd fcmd encode filename x = do
run (write filename (encode x))
run (fuzz fcmd filename)
ret← run (execute pcmd)
assert (¬ (has failed ret))

Finally, is up to QuickCheck to find a counterexample of prop NoFailFuzzed.
This counter-example is a witness which causes the target program to fail exe-
cution.

As a result of this process, we can test any compiled program, written in
any language, with a plethora of low-level fuzzers with prop NoFailFuzzed.

6 Evaluation

In this section we will describe different experiments to understand how Quick-
Fuzz is generating and mutating input files. From the extensive list of file
formats supported by QuickFuzz, shown in Figure 6a, we have selected five
of them to perform our experiments: Zip, Png, Jpeg, Xml and Svg. We have
selected these because they are binary and human-readable markup formats in
different applications. We aim to observe how QuickFuzz behaves in the gener-
ation and fuzzing among those. Since the generation and fuzzing are intrinsic-
ally a random procedure, each experimental measure detailed in this section
was repeated 10 times in a dedicated core of an Intel i7 running at 3.40GHz.

6.1 Generation Size

An important parameter for generational fuzzers is the maximum size of the
resulting file. Such value should be carefully controlled, allowing the user to set
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Figure 2: Average size in bytes of the generated files per file format

it, according to the resources available for the fuzzing campaign. Otherwise, if
the file generation results in a very large number of tiny input files or extremely
large ones, it will not be effective to detect bugs. The resulting fuzzing campaign
will be either useless to trigger bugs in the target program or will consume a
huge amount of memory and abort.

To avoid this pitfall, our instances of Arbitrary are carefully crafted to
keep the size generated value under control using the resize function provided
by QuickCheck. Figures 2a, 2b and 2c show how the average size of bytes
behaves when the maximum QuickCheck size is increased. The size of the
resulting files grows linearly according to the maximum size allowed to generate
by the QuickCheck framework.

It is also important to take a deeper look in the sizes of the generated files
to understand how they are distributed, considering that a bias toward the
generation of small files is useful in the context of the bug finding task. In fact,
the benefit is twofold since 1) it keeps the amount of time spent in program
executions low and 2) it prefers to generate small test cases. The resulting files
triggering bugs or vulnerabilities tend to be quite small and therefore are easier
to understand for developers looking to patch the faulty code.
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Figure 3: Frequency of generated file sizes in bytes
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In our experiments, we analyzed the size of the files of generated by Quick-
Fuzz bucketing them in Figures 3a, 3b and 3c. In such figures, we can observe
a bias for the generation of small input files.

6.2 Generation Effectiveness

Ideally, a fuzzer should generate or mutate inputs to produce a large number of
distinctive executions to exercise different lines of code. Hopefully, this process
should trigger conditions to discover unexpected behaviors in programs.

In order to explore the effectiveness of the generation of fuzzed files in
QuickFuzz, we evaluate how many different executions we can obtain in the
parsing and processing of the generated files. For the purposes of our experi-
ments, we use the coverage measure know as path employed by American Fuzzy
Lop [3], a well-known fuzzer, because:

• It was designed to be useful in the fuzzing campaigns: finding more paths
is highly correlated with the discovery of more bugs [11].

• It was built using a modular approach: we can easily re-use the corres-
ponding command line program to only extract paths and count them.

• It has a very fast instrumentation: it allows to extract paths at a nearly
native speed.

Note that the AFL coverage metric might map different executions to the
same path.

In our experiments, we use QuickFuzz to generate and fuzz Png, Jpeg and
Xml files. Then, we run each fuzzed file as input to widely deployed open
source libraries to parse and process them: we compiled instrumented libraries
to parse Png files using libpng 1.2.50, Xml files using libxml 2.9.1, and Jpeg
files using libjpeg-turbo 1.3.0. Figures 4a, 4b and 4c show how many paths can
be extracted from each instrumented implementation either using low-level
mutators (zzuf and radamsa) or directly executing the generated file.

We also included two baseline measures to compare how the file structure
created by our tool improves the path discovery. The first one generating files
of random bytes and the second one using the corresponding magic numbers
followed by a random bytes.

In the case of random generation, the image parsers libjpeg-turbo and libpng
will try to find a valid image since they work with arbitrary binary data. The
libxml 2.9.1 rejects the random file very early in the parsing process even if it
starts like a valid Xml file.

QuickFuzz discovers consistently more paths that these two baselines using
random file generation.

Also, as expected, if the user generates more files using QuickFuzz, it is more
likely to discover more paths. Additionally, the number of discovered paths will
grow very slowly after a few thousands files generated. This is understandable,
since QuickFuzz works as blind fuzzer: it does not receive any feedback on the
executions.
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Figure 4: Average of paths discovered per file formats given the number of
generated files. In this plots, circles (⃝) represent execution of unaltered files,
while triangles (△) are executions using files mutated by zzuf and squares
(□) are executions using files mutated by radamsa. Pluses (+) and crosses
(×) represent generation of random files with and without magic numbers
respectively.

In some file formats the effect of low-level fuzzing becomes relevant. For
instance, in the case of parsing fuzzed Xml files with libxml2, using radamsa
as a low level fuzzers noticeable improves the number of discovered paths,
compared to the executions of unaltered files.

Interestingly enough, mutating the files using zzuf produces quite the
opposite effect: the number of paths is significantly reduced when this fuzzer is
used. This behavior might be caused by the bit flipping of this fuzzer, causing
the files to become too corrupted to be read, rejecting the files at the early
stages of parsing.

6.3 Generation, Mutation and Execution Overhead

A good performance is critical in any fuzzer: we want to spend as little time
as possible in the generation and mutation. For the overhead evaluation of
QuickFuzz in the different stages of the fuzzing process, we measured the time
required for high-level fuzzing with and without execution (noted as gen+exec
and gen respectively) as well as high and low-level fuzzing using zzuf and
radamsa (noted as gen+exec+zzuf and gen+exec+rad respectively).

To strictly quantify the overhead in execution, we used /bin/echo which
does not read any file. Therefore, it should always take the same amount of
time to execute.

Figure 5 shows a comparison of the time that QuickFuzz took to perform
each step of the fuzzing process for three different file types. Our experiments
suggest that the performance of the code generated by MegaDeTH is not
limiting the other components of the tool. Additionally, as expected, there is
a noticeable overhead in the execution. It is possible that most of the extra
time executing is used for calling fork and exec primitives: this why is one the
reasons some fuzzers implement a fork server [3].
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Figure 5: Overhead of QuickFuzz performing the fuzzing process.

We expected that the overhead introduced by the use of a fuzzer to be
consistent regardless of the data to mutate. For instance, in the case of zzuf, a
fuzzer which only XORs bits from the input files without reading them, it should
be a constant overhead. However, the case of Radamsa is different. It is a fuzzer
which looks at the structure of the data and performs some mutations according
to it. In fact, it was specially designed to detect and fuzz markup languages:
this can explain the higher overhead in the mutation of Svg files using it.

6.4 Real-World Vulnerabilities Detection

Thanks to Haskell implementations of file-format-handling libraries found on
Hackage, QuickFuzz currently generates and mutates a large set of different file
types out of the box. Table 6a shows a list of supported file types to generate
and corrupt using our tool.

We tested QuickFuzz using complex real-world applications like browsers,
image processing utilities and file archivers among others. All the security
vulnerabilities presented in this work were previously unknown (also known
as zero-days). The results are summarized in Table 6b. An exhaustive list is
available at the official website of QuickFuzz, including frequent updates on
the latest bugs discovered using the tool.

Additionally, we reported some ordinary bugs. For instance, the use of vari-
able coherence enforcement allowed us to find a bug that stalls the compilation
in Python, and more than a twenty memory issues in GNU Bash and Busybox.

6.5 Comparison with Other Fuzzers

Making a fair comparison between fuzzers is a challenge. First, it only makes
sense to compare fuzzers using similar techniques. Second, in the case of
generative ones, the model to produce files in all the compared fuzzers should
be similar or somehow equivalent; otherwise, generating a complex input will

https://bugs.python.org/issue27695
https://bugs.python.org/issue27695
https://lists.gnu.org/archive/html/bug-bash/2016-09/msg00003.html
https://bugs.busybox.net/buglist.cgi?bug_status=__all__&content=QuickFuzz&no_redirect=1&order=Importance&query_format=specific
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Code
Javascript
Python
HTML
Lua
Json
Xml
Css
Sh
GLSL
Dot
Regex

Image
Bmp
Gif
Png
Jpeg
Svg
Eps
Ico
Tga
Tiff
Pnm

Document
Pdf
Ps
Docx
Odt
Rtf
ICal

Media
Ogg
ID3
Midi
TTF
Wav

Archive
Zip
GZip
Tar
CPIO

PKI
asn.1
x509
CRT

(a) File-types supported for fuzzing

Program File-Type Reference Program File-Type Reference

Firefox Gif CVE-2016-1933 Cairo Svg CVE-2016-9082
Firefox Zip CVE-2015-7194 libgd Tga CVE-2016-6132
Firefox Svg 1297206 libgd Tga CVE-2016-6214
Firefox Gif 1210745 GraphicsMagick Svg CVE-2016-2317
mujs Js CVE-2016-9109 GraphicsMagick Svg CVE-2016-2318

Webkit Js CVE-2016-9642 Mini-XML Xml CVE-2016-4570
Webkit Regex CVE-2016-9643 libical Ical CVE-2016-9584
gif2webp Gif CVE-2016-9085 Mini-Xml Xml CVE-2016-4571

VLC Wav CVE-2016-3941 GDK-pixbuf Bmp CVE-2015-7552
Jasper Jpeg CVE-2015-5203 GDK-pixbuf Gif CVE-2015-7674
libXML Xml CVE-2016-4483 GDK-pixbuf Tga CVE-2015-7673
libXML Xml CVE-2016-3627 GDK-pixbuf Ico CVE-2016-6352

Jq Json CVE-2016-4074 mplayer Wav CVE-2016-5115
Jasson Json CVE-2016-4425 mplayer Gif CVE-2016-4352
cpio CPIO CVE-2016-2037 libTIFF Tiff CVE-2015-7313

(b) Some of the security issues found by QuickFuzz

Figure 6: Implementation and results

most likely take varying amounts of time and could result in some fuzzers being
unfairly flagged as slow and inefficient.

Moreover, some fuzzers like Peach are not useful to start discovering bugs
immediately after installing them since they include almost no models to start
the input generation process. Usually, if you want to have a wide support of
file types or protocols to fuzz, you need to pay to access them [59] or hire an
specialist to create them. In other cases like Sulley, fuzzers are developed to be
more like a framework in which you can define models, mutate, and monitor
the process. As a result, no file-type specifications are provided out of the box.

Recently, Mozilla released Dharma, a fuzzer to generate very specific files
like Canvas2D and Node.js buffer scripts. It was designed by the Mozilla
Security team to stress the API of Firefox. Nevertheless, this tool is a good
candidate to compare with QuickFuzz since it includes a grammar to generate
Svg files and our tool currently supports to generate this kind of files through
the types and functions of svg-tree package [60].

A comparison of the bugs and vulnerabilities discovered by both fuzzers is
not possible: we could not find any public information regarding how many
issues were reported thanks to Dharma. However, we suspect that Mozilla

https://bugzilla.mozilla.org/show_bug.cgi?id=1297206
https://bugzilla.mozilla.org/show_bug.cgi?id=1210745
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Security already used it extensively to improve the quality of the Firefox parsers
and the render engine.

Fortunately, it is certainly possible to compare the throughput of both
fuzzers: QuickFuzz has approximately 1.9 times more throughput generating
files Svg files than Dharma. While this measure is far from perfect, it gives a
hint at how optimized is the generation of files using our tool.

6.6 Limitations

The use of third-party modules from Hackage carries some limitations. Some
of the modules we used to serialize complex file types do not implement all the
features. For instance, the Bmp support in Juicy.Pixels cannot handle or
serialize compressed files. Therefore this feature will not be effectively tested
in the Bmp parsers. In this sense, types are used as incomplete specifications
of file formats.

We performed some experiments to compare how good is the input genera-
tion variety of QuickFuzz against a mature and complete test suite of Png files.
We used a test suite created by Willem van Schaik [61] that contains a variety of
small Png files. It covers different color types (grayscale, rgb, palette, etc.), bit
depths, interlacing and transparency configurations allowed by the Png standard.
Also, in order to test robustness in the Png parsers, this test suite includes valid
images using odd sizes (for instance, very small and very large) and corrupted
images. We counted the amount of distinctive paths after processing all the Png
files in the test suite using pngtest from libpng [62]. We performed the same
experiment, but using QuickFuzz to generate and mutate Png files 10,000 times.

The execution of test suite uncovers 6268 different paths, while the generation
and fuzzing of 10,000 Png files using QuickFuzz, only discovers 746 different
paths. Therefore, our tool can only trigger ∼ 11% of the paths we discover
parsing a complex image format like Png.

There are several explanations for such low coverage compared with a
complete test suite like pngtest. On one hand, the generation of Png files
in QuickFuzz is limited by supported features in third-party libraries like
Juicy.Pixels [49]. For instance, this library lacks the code to encode interleaved
Png images. On the other hand, good test suites like this one are very expensive
to create since they require a very deep knowledge of the file format to test.
The use of automatic tools for test suites synthesis is still challenging.

Despite the automatic generation of a high-quality corpus of a very complex
file format like Png is still unfeasible, it is a long-term goal of our research.

Another limitation related to the encode function is caused by the use of
partial functions. There, the encoding could fail to execute correctly in a large
number of randomly generated inputs. For instance, if the encode function
requires some hard constrain to be present in the generated value such as some
particular magic number to be guessed:
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encodeHeader :: Int→ ByteString

encodeHeader version

| version == 87 = "GIF87"

| version == 89 = "GIF89"

| otherwise = error "invalid version"

In this function, the encoding of gif format files only defines two version
numbers 87 and 89: therefore, the approach to value generation defined in 4.1
is not going to be effective, since the probability of selecting a valid version
number is 1 in 2, 147, 483, 647. Currently, these kinds of issues are avoided by
manually selecting suitable libraries from Hackage to integrate into QuickFuzz.

Finally, the encode function used in the serialization includes its own bugs.
Unsurprisingly some of them can be triggered by the generation of QuickCheck
values. We reported some of these issues as bugs [63] to the upstream developers
of the libraries we use in QuickFuzz. In any case, we have a simple workaround
when no fix is available: if the encode function throws an unhandled exception,
we ignore it and continue the fuzzing process using the next generated value to
serialize.

7 Related Work

Automatic Algebraic Data Type Test Generation Claessen et al. [64]
propose a technique for automatically deriving test data generators from a
predicate expressed as a Boolean function. The derived generators are both
efficient and guaranteed to produce a uniform distribution over values of a
given size.

While MegaDeTH currently produces generators with ad-hoc distributions,
it would be feasible to integrate this technique into the existing machinery to
achieve more control over the test case generation process.

Testing Compilers Generating Random Programs As we stated in 4.3,
we observed that Arbitrary instances are not always effective in the generation
of source code, since it requires to carefully define variable names and functions
before trying to use them. Therefore, the fuzzer-generated source code will
very likely be rejected in the first parsing steps of interpreters or compilers.
This is a well-known issue that has been studied extensively by Pa lka et al. [65]
in the context of testing a compiler.

The approach in that paper always generates valid lambda calculus terms,
representing programs in Haskell. Then, they compiled the resulting terms
using the Glasgow Haskell compiler in different optimization levels, to try to
discover incorrectly compiled code.

In this sense, our tool also manages to generate source code and can be
used to test compilers. Nevertheless, they are designed with different goals in
mind; on one hand, the authors of [65] generate a program of a strongly typed
language. They define suitable rules for the generation, and how to backtrack
in case of failing to use them.
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On the other hand, QuickFuzz generates only source code from dynamically
typed programs, without using any backtracking in order to keep the generation
very fast, but not always correct.

8 Conclusions and Future Work

We have presented QuickFuzz, a tool for automatically generating inputs and
fuzzing programs that work on common file formats. Unlike other fuzzers,
QuickFuzz does not require the user to provide a set of valid inputs to mutate,
not to place the burden of writing specifications for file formats on the pro-
grammer. Our tool combines both generational and mutational fuzzing tech-
niques by bringing together Haskell’s QuickCheck library and off-the-shelf ro-
bust mutational fuzzers. In addition, we introduce MegaDeTH , a library that
can be used to generate instances of the Arbitrary type classes. MegaDeTH
works in tandem with QuickFuzz, allowing us to crowd-source the specifica-
tions for well-known file formats that are already present in Hackage libraries.
We tried QuickFuzz in the wild and found that the approach is effective in
discovering interesting bugs in real-world implementations. Moreover, to the
best of our knowledge QuickFuzz is the only fuzzing tool that provides out-of-
the-box generation and mutation of almost forty complex common file formats,
without requiring users to write models or configuration files.

As future work, we intend to introduce mutations at different levels of the
QuickFuzz pipeline rather than just at the level of the serialized ByteString.
In particular, we aim to explore code analysis of the serialization functions
to detect and selectively break invariants and to perform mutations on such
functions to corrupt files.

Another interesting feature to add to our tool is the input simplification
procedure [66]. This procedure can be used just after a crash is detected
and is very important for the developers looking to fix the issue, since the
minimized test case should only trigger the code that is required to reproduce
the unexpected behavior.

Our goal is to implement a general way to automatically derive specialized
input simplification strategies for algebraic data types encoding different file
formats. Moreover, by using the actions-based approach we would like to work
in a higher level of abstraction, reducing a test case to the minimal sequence
of actions needed to trigger an error on target programs.

Additionally, we observed that in general Haskell programmers implement
their libraries in the more general way they can abusing of the expressive power
of Haskell data-type ecosystem. Therefore the action-based approach is a good
starting point to derive Generalized Algebraic Data-types that can provide
us with more information based on the functions found in the library, and we
might capture effectful behaviors with this idea.

Finally, we would like to extend our approach to the generation and fuzzing
of network protocols, since most of the vulnerabilities there can be remotely
exploitable.
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Abstract

In QuickCheck (or, more generally, random testing), it is challenging to control
random data generators’ distributions—especially when it comes to user-
defined algebraic data types (ADT). In this paper, we adapt results from an
area of mathematics known as branching processes, and show how they help
to analytically predict (at compile-time) the expected number of generated
constructors, even in the presence of mutually recursive or composite ADTs.
Using our probabilistic formulas, we design heuristics capable of automatically
adjusting probabilities in order to synthesize generators whose distributions
are aligned with users’ demands. We provide a Haskell implementation of our
mechanism in a tool called DRAGEN and perform case studies with real-world
applications. When generating random values, our synthesized QuickCheck
generators show improvements in code coverage when compared with those
automatically derived by state-of-the-art tools.
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1 Introduction

Random property-based testing is an increasingly popular approach to finding
bugs [19], [20], [67]. In the Haskell community, QuickCheck [16] is the dominant
tool of this sort. QuickCheck requires developers to specify testing properties
describing the expected software behavior. Then, it generates a large number of
random test cases and reports those violating the testing properties. QuickCheck
generates random data by employing random test data generators or QuickCheck
generators for short. The generation of test cases is guided by the types involved
in the testing properties. It defines default generators for many built-in types
like booleans, integers, and lists. However, when it comes to user-defined ADTs,
developers are usually required to specify the generation process. The difficulty
is, however, that it might become intricate to define generators so that they
result in a suitable distribution or enforce data invariants.

The state-of-the-art tools to derive generators for user-defined ADTs can
be classified based on the automation level as well as the sort of invariants
enforced at the data generation phase. QuickCheck and SmallCheck [68] (a
tool for writing generators that synthesize small test cases) use type-driven
generators written by developers. As a result, generated random values are well-
typed and preserve the structure described by the ADT. Rather than manually
writing generators, libraries derive [69] and MegaDeTH [70], [71] automatically
synthesize generators for a given user-defined ADT. The library derive provides
no guarantees that the generation process terminates, while MegaDeTH pays
almost no attention to the distribution of values. In contrast, Feat [29] provides
a mechanism to uniformly sample values from a given ADT. It enumerates all
the possible values of a given ADT so that sampling uniformly from ADTs
becomes sampling uniformly from the set of natural numbers. Feat ’s authors
subsequently extend their approach to uniformly generate values constrained
by user-defined predicates [64]. Lastly, Luck is a domain-specific language for
manually writing QuickCheck properties in tandem with generators so that it
becomes possible to finely control the distribution of generated values [72].

In this work, we consider the scenario where developers are not fully aware
of the properties and invariants that input data must fulfill. This constitutes a
valid assumption for penetration testing [2], where testers often apply fuzzers in
an attempt to make programs crash—an anomaly that might lead to a vulner-
ability. We believe that, in contrast, if users can recognize specific properties
of their systems then it is preferable to spend time writing specialized generat-
ors for that purpose (e.g., by using Luck) instead of considering automatically
derived ones.

Our realization is that branching processes [73], a relatively simple stochastic
model conceived to study the evolution of populations, can be applied to predict
the generation distribution of ADTs’ constructors in a simple and automatable
manner. To the best of our knowledge, this stochastic model has not yet been
applied to this field, and we believe it may be a promising foundation to develop
future extensions. The contributions of this paper can be outlined as follows:
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• We provide a mathematical foundation that helps to analytically charac-
terize the distribution of constructors in derived QuickCheck generators
for ADTs.

• We show how to use type reification to simplify our prediction process
and extend our model to mutually recursive and composite types.

• We design (compile-time) heuristics that automatically search for prob-
ability parameters so that distributions of constructors can be adjusted
to what developers might want.

• We provide an implementation of our ideas in the form of a Haskell
library2 called DRAGEN (the Danish word for dragon, here standing for
Derivation of RAndom GENerators).

• We evaluate our tool by generating inputs for real-world programs, where
it manages to obtain significantly more code coverage than those random
inputs generated by MegaDeTH ’s generators.

Overall, our work addresses a timely problem with a neat mathematical
insight that is backed by a complete implementation and experience with third-
party examples.

2 Background

In this section, we briefly illustrate how QuickCheck random generators work.
We consider the following implementation of binary trees:

data Tree = LeafA | LeafB | LeafC | Node Tree Tree

In order to help developers write generators, QuickCheck defines the
Arbitrary type-class with the overloaded symbol arbitrary ::Gen a, which de-
notes a monadic generator for values of type a. Then, to generate random trees,
we need to provide an instance of the Arbitrary type-class for the type Tree.
Figure 1 shows a possible implementation. At the top level, this generator
simply uses QuickCheck ’s primitive oneof :: [Gen a ]→ Gen a to pick a generator
from a list of generators with uniform probability. This list consists of a random

2Available at https://github.com/OctopiChalmers/dragen

instance Arbitrary Tree where
arbitrary = oneof

[pure LeafA, pure LeafB, pure LeafC

, Node ⟨$⟩ arbitrary ⟨∗⟩ arbitrary]

Figure 1: Random generator for Tree.

https://github.com/OctopiChalmers/dragen
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instance Arbitrary Tree where
arbitrary = sized gen

where
gen 0 = oneof

[pure LeafA, pure LeafB, pure LeafC]
gen n = oneof

[pure LeafA, pure LeafB, pure LeafC

, Node ⟨$⟩ gen (div n 2) ⟨∗⟩ gen (div n 2)]

Figure 2: MegaDeTH generator for Tree.

generator for each possible choice of data constructor of Tree. We use applicat-
ive style [48] to describe each one of them idiomatically. So, pure LeafA is a gen-
erator that always generates LeafAs, while Node ⟨$⟩ arbitrary ⟨∗⟩ arbitrary
is a generator that always generates Node constructors, “filling” its arguments
by calling arbitrary recursively on each of them.

Although it might seem easy, writing random generators becomes cumber-
some very quickly. Particularly, if we want to write a random generator for
a user-defined ADT T, it is also necessary to provide random generators for
every user-defined ADT inside of T as well! What remains of this section is
focused on explaining the state-of-the-art techniques used to automatically de-
rive generators for user-defined ADTs via type-driven approaches.

2.1 Library derive

The simplest way to automatically derive a generator for a given ADT is the
one implemented by the Haskell library derive [69]. This library uses Template
Haskell [30] to automatically synthesize a generator for the data type Tree

semantically equivalent to the one presented in Figure 1.

While the library derive is a big improvement for the testing process,
its implementation has a serious shortcoming when dealing with recursively
defined data types: in many cases, there is a non-zero probability of generating
a recursive type constructor every time a recursive type constructor gets
generated, which can lead to infinite generation loops. A detailed example
of this phenomenon is given in Appendix 2.1. In this work, we only focus on
derivation tools that accomplish terminating behavior, since we consider this
an essential component of well-behaved generators.

2.2 MegaDeTH

The second approach we will discuss is the one taken by MegaDeTH , a meta-
programming tool used intensively by QuickFuzz [70], [71]. In the first place,
MegaDeTH derives random generators for ADTs as well as all of its nested
types—a useful feature not supported by derive. Secondly, MegaDeTH avoids
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potentially infinite generation loops by setting an upper bound to the random
generation recursive depth.

Figure 2 shows a simplified (but semantically equivalent) version of the ran-
dom generator for Tree derived by MegaDeTH . This generator uses QuickCheck ’s
function sized :: (Int→ Gen a)→ Gen a to build a random generator based
on a function (of type Int→ Gen a) that limits the possible recursive calls per-
formed when creating random values. The integer passed to sized’s argument
is called the generation size. When the generation size is zero (see definition
gen 0), the generator only chooses between the Tree’s terminal constructors—
thus ending the generation process. If the generation size is strictly positive, it
is free to randomly generate any Tree constructor (see definition gen n). When
it chooses to generate a recursive constructor, it reduces the generation size
for its subsequent recursive calls by a factor that depends on the number of
recursive arguments this constructor has (div n 2). In this way, MegaDeTH
ensures that all generated values are finite.

Although MegaDeTH generators always terminate, they have a major
practical drawback: in our example, the use of oneof to uniformly decide the
next constructor to be generated produces a generator that generates leaves
approximately three quarters of the time (note this also applies to the generator
obtained with derive from Figure 1). This entails a distribution of constructors
heavily concentrated on leaves, with a very small number of complex values
with nested nodes, regardless of how large the chosen generation size is—see
Figure 3 (left).

2.3 Feat

The last approach we discuss is Feat [29]. This tool determines the distribution
of generated values in a completely different way: it uses uniform generation
based on an exhaustive enumeration of all the possible values of the ADTs being
considered. Feat automatically establishes a bijection between all the possible
values of a given type T, and a finite prefix of the natural numbers. Then, it
guarantees a uniform generation over the complete space of values of a given
data type T up to a certain size.3 However, the distribution of size, given by
the number of constructors in the generated values, is highly dependent on the
structure of the data type being considered.

Figure 3 (right) shows the overall distribution shape of a QuickCheck
generator derived using Feat for Tree using a generation size of 400, i.e.,
generating values of up to 400 constructors.4 Notice that all the generated values
are close to the maximum size! This phenomenon follows from the exponential
growth in the number of possible Trees of n constructors as we increase n.
In other words, the space of Trees up to 400 constructors is composed to a
large extent of values with around 400 constructors, and (proportionally) very

3We avoid including any source code generated by Feat , since it works by synthesizing
Enumerable type-class instances instead of Arbitrary ones. Such instances give no insight
into how the derived random generators work.

4We choose to use this generation size here since it helps us to compare MegaDeTH and
Feat with the results of our tool in Section 8.
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Figure 3: Size distribution of 100000 randomly generated Tree values using
MegaDeTH (▲) with generation size 10, and Feat (■) with generation size 400.

few with a smaller number of constructors. Hence, a generation process based
on uniform generation of a natural number (which thus ignores the structure
of the type being generated) is biased very strongly towards values made up
of a large number of constructors. In our tests, no Tree with less than 390
constructors was ever generated. In practice, this problem can be partially
solved by using a variety of generation sizes in order to get more diversity in
the generated values. However, deciding which generation sizes are the best
choices is not a trivial task either. As a consequence, in this work we consider
only the case of fixed-size random generation.

As we have shown, by using both MegaDeTH and Feat , the user is tied to
the fixed generation distribution that each tool produces, which tends to be
highly dependent on the particular data type under consideration in each case.
Instead, this work aims to provide a theoretical framework able to predict and
later tune the distributions of automatically derived generators, giving the user
a more flexible testing environment, while keeping it as automated as possible.

3 Simple-Type Branching Processes

Galton-Watson Branching processes (or branching processes for short) are a
particular case of Markov processes that model the growth and extinction of
populations. Originally conceived to study the extinction of family names in
the Victorian era, this formalism has been successfully applied to a wide range
of research areas in biology and physics—see the textbook by Haccou et al.
[74] for an excellent introduction. In this section, we show how to use this
theory to model QuickCheck ’s distribution of constructors.

We start by analyzing the generation process for the Node constructors in
the data type Tree as described by the generators in Figure 1 and 2. From
the code, we can observe that the stochastic process they encode satisfies the
following assumptions (which coincide with the assumptions of Galton-Watson
branching processes): i) With a certain probability, it starts with some initial
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Figure 4: Generation of Node constructors.

Node constructor. ii) At any step, the probability of generating a Node is not
affected by the Nodes generated before or after. iii) The probability of generating
a Node is independent of where in the tree that constructor is about to be placed.

The original Galton-Watson process is a simple stochastic process that
counts the population sizes at different points in time called generations. For
our purposes, populations consist of Node constructors, and generations are
obtained by selecting tree levels.

Figure 4 illustrates a possible generated value. It starts by generating a
Node constructor at generation (i.e., depth) zero (G0), then another two Node

constructors as left and right subtrees in generation one (G1), etc. (Dotted
edges denote further constructors which are not drawn, as they are not essential
for the point being made.) This process repeats until the population of Node
constructors becomes extinct or stable, or alternatively grows forever.

The mathematics behind the Galton-Watson process allows us to predict
the expected number of offspring at the nth-generation, i.e., the number of
Node constructors at depth n in the generated tree. Formally, we start by
introducing the random variable R to denote the number of Node constructors
in the next generation generated by a Node constructor in this generation—the
R comes from “reproduction” and the reader can think it as a Node constructor
reproducing Node constructors. To be a bit more general, let us consider the
Tree random generator automatically generated using derive (Figure 1), but
where the probability of choosing between any constructor is no longer uniform.
Instead, we have a pC probability of choosing the constructor C.

These probabilities are external parameters of the prediction mechanism,
and Section 7 explains how they can later be instantiated with actual values
found by optimization, enabling the user to tune the generated distribution.

We note pLeaf as the probability of generating a leaf of any kind, i.e.,
pLeaf = pLeafA + pLeafB + pLeafC . In this setting, and assuming a parent
constructor Node, the probabilities of generating R numbers of Node offspring
in the next generation (i.e., in the recursive calls of arbitrary) are as follows:

P (R = 0) = pLeaf · pLeaf

P (R = 1) = pNode · pLeaf + pLeaf · pNode = 2 · pNode · pLeaf

P (R = 2) = pNode · pNode

One manner to understand the equations above is by considering what
QuickCheck does when generating the subtrees of a given node. For instance,
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the cases when generating exactly one Node as descendant (P (R = 1)) occurs
in two situations: when the left subtree is a Node and the right one is a Leaf;
and vice-versa. The probability for those events to occur is pNode ∗ pLeaf and
pLeaf ∗ pNode, respectively. Then, the probability of having exactly one Node

as a descendant is given by the sum of the probability of both events—the
other cases follow a similar reasoning.

Now that we have determined the distribution of R, we proceed to introduce
the random variables Gn to denote the population of Node constructors in
the nth generation. We write ξni for the random variable which captures the
number of (offspring) Node constructors at the nth generation produced by the
ith Node constructor at the (n-1)th generation. It is easy to see that it must
be the case that:

Gn = ξn1 + ξn2 + · · ·+ ξnGn−1

To deduce E[Gn], i.e. the expected number of Nodes in the nth generation,
we apply the (standard) Law of Total Expectation E[X] = E[E[X|Y ]]5 with
X = Gn and Y = Gn−1 to obtain:

E[Gn] = E[E[Gn|Gn−1]]. (1)

By expanding Gn, we deduce that:

E[Gn|Gn−1] = E[ξn1 + ξn2 +· · ·+ ξnGn−1
|Gn−1]

= E[ξn1 |Gn−1] + E[ξn2 |Gn−1] +· · ·+ E[ξnGn−1
|Gn−1]

Since ξn1 , ξn2 , ..., and ξnGn−1
are all governed by the distribution captured by

the random variable R (recall the assumptions at the beginning of the section),
we have that:

E[Gn|Gn−1] = E[R|Gn−1] + E[R|Gn−1] + · · ·+ E[R|Gn−1]

Since R is independent of the generation where Node constructors decide to
generate other Node constructors, we have that

E[Gn|Gn−1] = E[R] + E[R] + · · ·+ E[R]︸ ︷︷ ︸
Gn−1 times

= E[R]·Gn−1 (2)

From now on, we introduce m to denote the mean of R, i.e., the mean of
reproduction. Then, by rewriting m = E[R], we obtain:

E[Gn]
(1)
= E[E[Gn|Gn−1]]

(2)
= E[m·Gn−1]

m is constant
= E[Gn−1]·m

By unfolding this recursive equation many times, we obtain:

5E[X|Y ] is a function on the random variable Y , i.e., E[X|Y ]y = E[X|Y = y] and
therefore it is a random variable itself. In this light, the law says that if we observe the
expectations of X given the different ys, and then we do the expectation of all those values,
then we have the expectation of X.
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E[Gn] = E[G0]·mn (3)

As the equation indicates, the expected number of Node constructors at the
nth generation is affected by the mean of reproduction. Although we obtained
this intuitive result using a formalism that may look overly complex, it is useful
to understand the methodology used here. In the next section, we will derive
the main result of this work following the same reasoning line under a more
general scenario.

We can now also predict the total expected number of individuals up to
the nth generation. For that purpose, we introduce the random variable Pn

to denote the population of Node constructors up to the nth generation. It is
then easy to see that Pn =

∑n
i=0 Gi and consequently:

E[Pn]=

n∑
i=0

E[Gi]
(3)
=

n∑
i=0

E[G0] ·mi = E[G0]·
(

1−mn+1

1−m

)
(4)

where the last equality holds by the geometric series definition. This is the
general formula provided by the Galton-Watson process. In this case, the mean
of reproduction for Node is given by:

m = E[R] =

2∑
k=0

k · P (R = k) = 2 · pNode (5)

By (4) and (5), the expected number of Node constructors up to generation
n is given by the following formula:

E[Pn]=E[G0]·
(

1−mn+1

1−m

)
=pNode ·

(
1−(2 · pNode)n+1

1−2·pNode

)
If we apply the previous formula to predict the distribution of constructors

induced by MegaDeTH in Figure 2, where pLeafA = pLeafB = pLeafC =
pNode = 0.25, we obtain an expected number of Node constructors up to level
10 of 0.4997, which denotes a distribution highly biased towards small values
since we can only produce further subterms by producing Nodes. However, if
we set pLeafA = pLeafB = pLeafC = 0.1 and pNode = 0.7, we can predict that,
as expected, our general random generator will generate much bigger trees,
containing an average number of 69.1173 Nodes up to level 10! Unfortunately,
we cannot apply this reasoning to predict the distribution of constructors for
derived generators for ADTs with more than one non-terminal constructor.
For instance, let us consider the following data type definition:

data Tree′ = Leaf | NodeA Tree′ Tree′ | NodeB Tree′

In this case, we need to separately consider that a NodeA can generate
not only NodeA but also NodeB offspring (similarly with NodeB). A stronger
mathematical formalism is needed. The next section explains how to predict
the generation of this kind of data types by using an extension of Galton-
Waston processes known as multi-type branching processes.
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4 Multi-Type Branching Processes

In this section, we present the basis for our main contribution: the application
of multi-type branching processes to predict the distribution of constructors. We
will illustrate the technique by considering the Tree′ ADT that we concluded
with in the previous section.

Before we dive into technicalities, Figure 5 shows the automatically derived
generator for Tree′ that our tool produces. Our generators depend on the (pos-
sibly) different probabilities that constructors have to be generated—variables
pLeaf , pNodeA, and pNodeB. These probabilities are used by the function
chooseWith :: [(Double, Gen a)]→ Gen a, which picks a random generator of
type a with an explicitly given probability from a list. This function can be eas-
ily expressed by using QuickCheck ’s primitive operations and therefore we omit
its implementation. Additionally note that, like MegaDeTH , our generators
use sized to limit the number of recursive calls to ensure termination. We note
that the theory behind branching processes is able to predict the termination be-
havior of our generators and we could have used this ability to ensure their ter-
mination without the need of a depth limiting mechanism like sized. However,
using sized provides more control over the obtained generator distributions.

To predict the distribution of constructors provided by DRAGEN generators,
we introduce a generalization of the previous Galton-Watson branching process
called multi-type Galton-Watson branching process. This generalization allows
us to consider several kinds of individuals, i.e., constructors in our setting, to
procreate (generate) different kinds of offspring (constructors). Additionally,
this approach allows us to consider not just one constructor, as we did in the
previous section, but rather to consider all of them at the same time.

Before we present the mathematical foundations, which follow a similar line
of reasoning as that in Section 3, Figure 6 illustrates a possible generated value
of type Tree′.

In the generation process, it is assumed that the kind (i.e., the constructor)
of the parent might affect the probabilities of reproducing (generating) offspring
of a certain kind. Observe that this is the case for a wide range of derived
ADT generators, e.g., choosing a terminal constructor (e.g., Leaf) affects the

instance Arbitrary Tree′ where
arbitrary = sized gen

where
gen 0 = pure Leaf

gen n = chooseWith

[ (pLeaf , pure Leaf)
, (pNodeA, NodeA ⟨$⟩ gen (n− 1) ⟨∗⟩ gen (n− 1))
, (pNodeB , NodeB ⟨$⟩ gen (n− 1))]

Figure 5: DRAGEN generator for Tree′
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Figure 6: A generated value of type Tree′.

probabilities of generating non-terminal ones (by setting them to zero). The
population at the nth generation is then characterized as a vector of random
variables Gn = (G1

n, G
2
n, · · · , Gd

n), where d is the number of different kinds of
constructors. Each random variable Gi

n captures the number of occurrences of
the ith-constructor of the ADT at the nth generation. Essentially, Gn “groups”
the population at level n by the constructors of the ADT. By estimating
the expected shape of the vector Gn, it is possible to obtain the expected
number of constructors at the nth generation. Specifically, we have that
E[Gn] = (E[G1

n], E[G2
n], · · · , E[Gd

n]). To deduce E[Gn], we focus on deducing
each component of the vector.

As explained above, the reproduction behavior is determined by the kind of
the individual. In this light, we introduce random variable Rij to denote a parent
ith constructor reproducing a jth constructor. As we did before, we apply the
equation E[X] = E[E[X|Y ]] with X = Gj

n and Y = Gn−1 to obtain E[Gj
n] =

E[E[Gj
n|Gn−1]]. To calculate the expected number of jth constructors at the

level n produced by the constructors present at level (n−1), i.e., E[Gj
n|G(n−1)],

it is enough to count the expected number of children of kind j produced by
the different parents of kind i, i.e., E[Rij ], times the amount of parents of
kind i found in the level (n− 1), i.e., Gi

(n−1). This result is expressed by the

following equation marked as (⋆), and is formally verified in the Appendix 2.2.

E[Gj
n|Gn−1]

(⋆)
=

d∑
i=1

Gi
(n−1) ·E[Rij ] =

d∑
i=1

Gi
(n−1) ·mij (6)

Similarly as before, we rewrite E[Rij ] as mij , which now represents a single
expectation of reproduction indexed by the kind of both the parent and child
constructor.

Mean Matrix of Constructors In the previous section, m was the expect-
ation of reproduction of a single constructor. Now we have mij as the expecta-
tion of reproduction indexed by the parent and child constructor. In this light,
we define MC , the mean matrix of constructors (or mean matrix for simplicity)
such that each mij stores the expected number of jth constructors generated
by the ith constructor. MC is a parameter of the Galton-Watson multi-type
process and can be built at compile-time using statically known type informa-
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tion. We are now able to deduce E[Gj
n].

E[Gj
n] = E[E[Gj

n|Gn−1]]
(6)
= E

[
d∑

i=1

Gi
(n−1) ·mij

]

=

d∑
i=1

E[Gi
(n−1) ·mij ] =

d∑
i=1

E[Gi
(n−1)]·mij

Using this last equation, we can rewrite E[Gn] as follows.

E[Gn] =

(
d∑

i=1

E[G1
(n−1)]·mi1, · · · ,

d∑
i=1

E[Gd
(n−1)]·mid

)
By linear algebra, we can rewrite the vector above as the matrix multiplication
E[Gn]T = E[Gn−1]T ·MC . By repeatedly unfolding this definition, we obtain
that:

E[Gn]T = E[G0]T · (MC)n (7)

This equation is a generalization of (3) when considering many constructors.
As we did before, we introduce a random variable Pn =

∑n
i=0 Gi to denote the

population up to the nth generation. It is now possible to obtain the expected
population of all the constructors but in a clustered manner:

E[Pn]T = E

[
n∑

i=0

Gi

]T
=

n∑
i=0

E[Gi]
T (7)

=

n∑
i=0

E[G0]T ·(MC)n (8)

It is possible to write the resulting sum as the closed formula:

E[Pn]T = E[G0]T ·
(
I − (MC)n+1

I −MC

)
(9)

where I represents the identity matrix of the appropriate size. Note that
equation (9) only holds when (I −MC) is non-singular, however, this is the
usual case. When (I −MC) is singular, we resort to using equation (8) instead.
Without losing generality, and for simplicity, we consider equations (8) and
(9) as interchangeable. They are the general formulas for the Galton-Watson
multi-type branching processes.

Then, to predict the distribution of our Tree′ data type example, we
proceed to build its mean matrix MC . For instance, the mean number of Leafs
generated by a NodeA is:

mNodeA,Leaf = 1 · pLeaf · pNodeA + 1 · pLeaf · pNodeB︸ ︷︷ ︸
One Leaf as left-subtree

+ 1 · pNodeA · pLeaf + 1 · pNodeB · pLeaf︸ ︷︷ ︸
One Leaf as right-subtree

+ 2 · pLeaf · pLeaf︸ ︷︷ ︸
Leaf as left- and right-subtree

= 2 · pLeaf (10)
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The rest of MC can be similarly computed, obtaining:

MC =

0 0 0

2 · pLeaf 2 · pNodeA 2 · pNodeB

pLeaf pNodeA pNodeB




Leaf NodeA NodeB

Leaf

NodeA

NodeB

(11)

Note that the first row, corresponding to the Leaf constructor, is filled with
zeros. This is because Leaf is a terminal constructor, i.e., it cannot generate
further subterms of any kind.6

With the mean matrix in place, we define E[G0] (the initial vector of mean
probabilities) as (pLeaf , pNodeA, pNodeB). By applying (9) with E[G0] and
MC , we can predict the expected number of generated non-terminal NodeA
constructors (and analogously NodeB) with a size parameter n as follows:

E[NodeA]=
(
E[Pn−1]T

)
.NodeA=

(
E[G0]T ·

(
I−(MC)n

I−MC

))
.NodeA

Function ( ).C simply projects the value corresponding to constructor C
from the population vector. It is very important to note that the sum only
includes the population up to level (n− 1). This choice comes from the fact
that our QuickCheck generator can choose between only terminal constructors
at the last generation level (recall that gen 0 generates only Leafs in Figure
5). As an example, if we assign our generation probabilities for Tree′ as
pLeaf 7→ 0.2, pNodeA 7→ 0.5 and pNodeB 7→ 0.3, then the formula predicts that
our QuickCheck generator with a size parameter of 10 will generate on average
21.322 NodeAs and 12.813 NodeBs. This result can easily be verified by sampling
a large number of values with a generation size of 10, and then averaging the
number of generated NodeAs and NodeBs across the generated values.

In this section, we obtain a prediction of the expected number of non-
terminal constructors generated by DRAGEN generators. To predict terminal
constructors, however, requires special treatment as discussed in the next
section.

5 Terminal Constructors

In this section, we introduce the special treatment required to predict the
generated distribution of terminal constructors, i.e. constructors with no
recursive arguments.

Consider the generator in Figure 5. It generates terminal constructors in
two situations, i.e., in the definition of gen 0 and gen n. In other words, the
random process introduced by our generators can be considered to be composed
of two independent parts when it comes to terminal constructors—refer to

6The careful reader may notice that there is a pattern in the mean matrix if inspected
together with the definition of Tree′. We prove in Section 6 that each mij can be automatically
calculated by simply exploiting type information.
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Appendix 2.3 for a graphical interpretation. In principle, the number of terminal
constructors generated by the stochastic process described by gen n is captured
by the multi-type branching process formulas. However, to predict the expected
number of terminal constructors generated by exercising gen 0, we need to
separately consider a random process that only generates terminal constructors
in order to terminate. For this purpose, and assuming a maximum generation
depth n, we need to calculate the number of terminal constructors required to
stop the generation process at the recursive arguments of each non-terminal
constructor at level (n − 1). In our Tree′ example, this corresponds to two
Leafs for every NodeA and one Leaf for every NodeB constructor at level (n−1).

Since both random processes are independent, to predict the overall expected
number of terminal constructors, we can simply add the expected number of
terminal constructors generated in each one of them. Recalling our previous
example, we obtain the following formula for Tree′ terminals as follows:

E[Leaf] =
(
E[Pn−1]T

)
.Leaf︸ ︷︷ ︸

branching process

+ 2·
(
E[Gn−1]T

)
.NodeA︸ ︷︷ ︸

case (NodeA Leaf Leaf)

+ 1·
(
E[Gn−1]T

)
.NodeB︸ ︷︷ ︸

case (NodeB Leaf)

The formula counts the Leafs generated by the multi-type branching process up
to level (n−1) and adds the expected number of Leafs generated at the last level.

Although we can now predict the expected number of generated Tree′

constructors regardless of whether they are terminal or not, this approach only
works for data types with a single terminal constructor.

If we have a data type with multiple terminal constructors, we have to
consider the probabilities of choosing each one of them when filling in the
recursive arguments of non-terminal constructors at the previous level. For
instance, consider the following ADT:

data Tree′′ = LeafA | LeafB | NodeA Tree′′ Tree′′ | NodeB Tree′′

Figure 7 shows the corresponding DRAGEN generator for Tree′′. Note
there are two sets of probabilities to choose terminal nodes, one for each random
process. The p∗LeafA and p∗LeafB probabilities are used to choose between
terminal constructors at the last generation level. These probabilities preserve
the same proportion as their non-starred versions, i.e., they are normalized to
form a probability distribution:

p∗LeafA =
pLeafA

pLeafA + pLeafB
p∗LeafB =

pLeafB

pLeafA + pLeafB

In this manner, we can use the same generation probabilities for terminal
constructors in both random processes—therefore reducing the complexity of
our prediction engine implementation (described in Section 7).

To compute the overall expected number of terminals, we need to predict
the expected number of terminal constructors at the last generation level which
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instance Arbitrary Tree′′ where
arbitrary = sized gen

where
gen 0 = chooseWith

[ (p∗LeafA, pure LeafA), (p∗LeafB , pure LeafB)]

gen n = chooseWith

[ (pLeafA, pure LeafA), (pLeafB , pure LeafB)
, (pNodeA, NodeA ⟨$⟩ gen (n−1) ⟨∗⟩ gen (n−1))
, (pNodeB , NodeB ⟨$⟩ gen (n−1))]

Figure 7: Derived generator for Tree′′

could be descendants of non-terminal constructors at level (n − 1). More
precisely:

E[LeafA] =
(
E[Pn−1]T

)
.LeafA︸ ︷︷ ︸

branching process

+ 2·p∗LeafA ·
(
E[Gn−1]T

)
.NodeA︸ ︷︷ ︸

expected leaves to fill NodeAs

+ 1·p∗LeafA ·
(
E[Gn−1]T

)
.NodeB︸ ︷︷ ︸

expected leaves to fill NodeBs

where the case of E[LeafB] follows analogously.

6 Mutually-Recursive and Composite ADTs

In this section, we introduce some extensions to our model that allow us
to derive DRAGEN generators for data types found in existing off-the-shelf
Haskell libraries. We start by showing how multi-type branching processes
naturally extend to mutually-recursive ADTs. Consider the mutually recursive
ADTs T1 and T2 with their automatically derived generators shown in Figure 8.

Note the use of the QuickCheck ’s function resize :: Int→ Gen a→ Gen a,
which resets the generation size of a given generator to a new value. We use
it to decrement the generation size at the recursive calls of arbitrary that
generate subterms of a mutually recursive data type.

The key observation is that we can ignore that A, B, C and D are constructors
belonging to different data types and just consider each of them as a kind of
offspring on their own. Figure 9 visualizes the possible offspring generated
by the non-terminal constructor B (belonging to T1) with the corresponding
probabilities as labeled edges. Following the figure, we obtain the expected
number of Ds generated by B constructors as follows:

mBD = 1 · pA · pD + 1 · pB · pD = pD · (pA + pB) = pD
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data T1 = A | B T1 T2
data T2 = C | D T1

instance Arbitrary T1 where
arbitrary = sized gen where
gen 0 = pure A

gen n = chooseWith

[ (pA, pure A)
, (pB , B ⟨$⟩ gen (n−1) ⟨∗⟩ resize (n−1) arbitrary)]

instance Arbitrary T2 where
arbitrary = sized gen where
gen 0 = pure C

gen n = chooseWith

[(pC , pure C), (pD, D ⟨$⟩ resize (n−1) arbitrary)]

Figure 8: Mutually recursive types T1 and T2 and their DRAGEN generators.

Doing similar calculations, we obtain the mean matrix MC for A, B, C, and
D as follows:

MC =

0 0 0 0
pA pB pC pD

0 0 0 0

pA pB 0 0




A B C D

A

B

C

D

(12)

We define the mean of the initial generation as E[G0] = (pA, pB , 0, 0)—we
assign pC = pD = 0 since we choose to start by generating a value of type T1.
With MC and E[G0] in place, we can apply the equations explained through
Section 4 to predict the expected number of A, B, C and D constructors.

While this approach works, it completely ignores the types T1 and T2 when
calculating MC ! For a large set of mutually-recursive data types involving a
large number of constructors, handling MC like this results in a high compu-
tational cost. We show next how we cannot only shrink this mean matrix of
constructors but also compute it automatically by making use of data type
definitions.

B
B A C

pA · pC

B A (D · · · )

pA · pD

B (B · · · ) C

pB · pC
B (B · · · ) (D · · · )

pB · pD

Figure 9: Possible offspring of constructor B.
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Tree′

Tree′ Tree′

pNodeA

Tree′

pNodeB

T1

T1 T2

pB

T2

T1

pD

Figure 10: Offspring as types

Mean Matrix of Types If we analyze the mean matrices of Tree′ (11) and
the mutually-recursive types T1 and T2 (12), it seems that determining the
expected number of offspring generated by a non-terminal constructor requires
us to count the number of occurrences in the ADT to which the offspring
belongs to. For instance, mNodeA,Leaf is 2 ·pLeaf (10), where 2 is the number of
occurrences of Tree′ in the declaration of NodeA. Similarly, mBD is 1·pD, where
1 is the number of occurrences of T2 in the declaration of B. This observation
means that instead of dealing with constructors, we can directly deal with types!

We can think about a branching process as generating “place holders” for
constructors, where placeholders can only be populated by constructors of a
certain type.

Figure 10 illustrates offspring as types for the definitions T1, T2, and Tree′. A
place holder of type T1 can generate a place holder for type T1 and a placeholder
for type T2. A placeholder of type T2 can generate a placeholder of type
T1. A placeholder of type Tree′ can generate two placeholders of type Tree′

when generating NodeA, one place holder when generating NodeB, or zero place
holders when generating a Leaf (this last case is not shown in the figure since
it is void). With these considerations, the mean matrices of types for Tree′,
written MTree′ ; and types T1 and T2, written MT1T2

are defined as follows:

MTree′ = 2 · pNodeA + pNodeB

[ ]Tree′

Tree′ MT1T2
=

pB pB

pD 0

[ ]T1 T2

T1

T2

Note how MTree′ shows that the mean matrices of types might reduce a
multi-type branching process to a simple-type one.

Having the type matrix in place, we can use the following equation (formally
stated and proved in the Appendix 1) to soundly predict the expected number
of constructors of a given set of (possibly) mutually recursive types:

(E[GC
n ]).Ct

i = (E[GT
n ]).Tt · pCt

i
(∀n ≥ 0)

Where GC
n and GT

n denotes the nth-generations of constructors and type
placeholders respectively. Ct

i represents the ith-constructor of the type Tt. The
equation establishes that, the expected number of constructors Ct

i at generation
n consists of the expected number of type placeholders of its type (i.e., Tt)
at generation n times the probability of generating that constructor. This
equation allows us to simplify many of our calculations above by simply using
the mean matrix for types instead of the mean matrix for constructors.
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6.1 Composite Types

In this subsection, we extend our approach in a modular manner to deal with
composite ADTs, i.e., ADTs that use already defined types in their constructors’
arguments and which are not involved in the branching process. We start by
considering the ADT Tree modified to carry booleans at the leaves:

data Tree = LeafA Bool | LeafB Bool Bool | · · ·

Where · · · denotes the constructors that remain unmodified. To predict the
expected number of True (and analogously of False) constructors, we calculate
the multi-type branching process for Tree and multiply each expected number
of leaves by the number of arguments of type Bool present in each one:

E[True] = pTrue · (1 · E[LeafA]︸ ︷︷ ︸
case LeafA

+ 2 · E[LeafB]︸ ︷︷ ︸
case LeafB

)

In this case, Bool is a ground type like Int, Float, etc. Predictions become
more interesting when considering richer composite types involving, for instance,
instantiations of polymorphic types. To illustrate this point, consider a modified
version of Tree where LeafA now carries a value of type Maybe Bool:

data Tree = LeafA (Maybe Bool) | LeafB Bool Bool | · · ·

In order to calculate the expected number of Trues, now we need to consider
the cases that a value of type Maybe Bool actually carries a boolean value, i.e.,
when a Just constructor gets generated:

E[True] = pTrue · (1 · E[LeafA] · pJust + 2 · E[LeafB])

In the general case, for constructor arguments utilizing other ADTs, it
is necessary to know the chain of constructors required to generate “foreign”
values—in our example, a True value gets generated if a LeafA gets generated
with a Just constructor “in between.” To obtain such information, we create a
constructor dependency graph (CDG), that is, a directed graph where each node
represents a constructor and each edge represents its dependency. Each edge
is labeled with its corresponding generation probability. Figure 11 shows the

LeafA

Just

True

pTrue

False

pFalse

pJust

Nothing

pNothing

Figure 11: Constructor dependency graph.
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CDG for Tree starting from the LeafA constructor. Having this graph together
with the application of the multi-type branching process, we can predict the
expected number of constructors belonging to external ADTs. It is enough to
multiply the probabilities at each edge of the path between every constructor
involved in the branching process and the desired external constructor.

The extensions described so far enable our tool (presented in the next
section) to make predictions about QuickCheck generators for ADTs defined
in many existing Haskell libraries.

7 Implementation

DRAGEN is a tool chain written in Haskell that implements the multi-type
branching processes (Section 4 and 5) and its extensions (Section 6) together
with a distribution optimizer, which calibrates the probabilities involved in
generators to fit developers’ demands. DRAGEN synthesizes generators by
calling the Template Haskell function dragenArbitrary :: Name → Size →
CostFunction→ Q [Dec ], where developers indicate the target ADT for which
they want to obtain a QuickCheck generator; the desired generation size,
needed by our prediction mechanism in order to calculate the distribution at
the last generation level; and a cost function encoding the desired generation
distribution.

The design decision to use a probability optimizer rather than search for
an analytical solution is driven by two important aspects of the problem we
aim to solve. Firstly, the computational cost of exactly solving a non-linear
system of equations (such as those arising from branching processes) can be
prohibitively high when dealing with a large number of constructors, thus a
large number of unknowns to be solved. Secondly, the existence of such exact
solutions is not guaranteed due to the implicit invariants the data types under
consideration might have. In such cases, we believe it is much more useful to
construct a distribution that approximates the user’s goal than to abort the
entire compilation process. We give an example of this approximate solution-
finding behavior later in this section.

7.1 Cost Functions

The optimization process is guided by a user-provided cost function. In our
setting, a cost function assigns a real number (a cost) to the combination of
a generation size (chosen by the user) and a mapping from constructors to
probabilities:

type CostFunction = Size→ ProbMap→ Double

Type ProbMap encodes the mapping from constructor names to real numbers.
Our optimization algorithm works by generating several probability mapping
candidates that are evaluated through the provided cost function in order to
choose the most suitable one. Cost functions are expected to return a smaller
positive number as the predicted distribution obtained from its parameters
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Table 1: Predicted and actual distributions for Tree generators using different
cost functions.

Cost Function Predicted Expectation Observed Expectation
LeafA LeafB LeafC Node LeafA LeafB LeafC Node

uniform 5.26 5.26 5.21 14.73 5.27 5.26 5.21 14.74
weighted [(′LeafA, 3), (′LeafB , 1), (′LeafC , 1)] 30.07 9.76 10.15 48.96 30.06 9.75 10.16 48.98
weighted [(′LeafA, 1), (′Node, 3)] 10.07 3.15 17.57 29.80 10.08 3.15 17.58 29.82
only [ ′LeafA,

′Node ] 10.41 0 0 9.41 10.43 0 0 9.43
without [ ′LeafC ] 6.95 6.95 0 12.91 6.93 6.92 0 12.86

gets closer to a certain target distribution, which depends on what property
that particular cost function is intended to encode. Then, the optimizer simply
finds the best ProbMap by minimizing the provided cost function.

Currently, our tool provides a basic set of cost functions to easily describe
the expected distribution of the derived generator. For instance, uniform ::
CostFunction encodes constructor-wise uniform generation, an interesting
property that naturally arises from our generation process formalization. It
guides the optimization process to a generation distribution that minimizes
the difference between the expected number of each generated constructor and
the generation size. Moreover, the user can restrict the generation distribution
to a certain subset of constructors using the cost functions only :: [Name] →
CostFunction and without :: [Name] → CostFunction to describe these re-
strictions. In this case, the whitelisted constructors are then generated follow-
ing the uniform behavior. Similarly, if the branching process involves mutually
recursive data types, the user could restrict the generation to a certain sub-
set of data types by using the functions onlyTypes and withoutTypes. Ad-
ditionally, when the user wants to generate constructors according to certain
proportions, weighted :: [(Name, Int)]→ CostFunction allows to encode this
property, e.g. three times more LeafA’s than LeafB’s.

Table 1 shows the number of expected and observed constructors of different
Tree generators obtained by using different cost functions. The observed
expectations were calculated averaging the number of constructors across 100000
generated values. Firstly, note how the generated distributions are soundly
predicted by our tool. In our tests, the small differences between predictions
and actual values disappear as we increase the number of generated values.
As for the cost functions’ behavior, there are some interesting aspects to note.
For instance, in the uniform case the optimizer cannot do anything to break
the implicit invariant of the data type: every binary tree with n nodes has
n + 1 leaves. Instead, it converges to a solution that “approximates” a uniform
distribution around the generation size parameter. We believe this is desirable
behavior, to find an approximate solution when certain invariants prevent the
optimization process from finding an exact solution. This way the user does
not have to be aware of the possible invariants that the target data type may
have, obtaining a solution that is good enough for most purposes. On the
other hand, notice that in the weighted case at the second row of Table 1, the
expected number of generated Nodes is considerably large. This constructor
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is not listed in the proportions list, hence the optimizer can freely adjust its
probability to satisfy the proportions specified for the leaves.

7.2 Derivation Process

DRAGEN ’s derivation process starts at compile-time with a type reification
stage that extracts information about the structure of the types under consid-
eration. It follows an intermediate stage composed of the optimizer for probab-
ilities used in generators, which is guided by our multi-type branching process
model, parameterized on the cost function provided. This optimizer is based
on a standard local-search optimization algorithm that recursively chooses the
best mapping from constructors to probabilities in the current neighborhood.
Neighbors are ProbMaps, determined by individually varying the probabilities
for each constructor with a predetermined ∆. Then, to determine the “best”
probabilities, the local search applies our prediction mechanism to the immedi-
ate neighbors that have not yet been visited by evaluating the cost function to
select the most suitable next candidate. This process continues until a local
minimum is reached when there are no new neighbors to evaluate, or if each
step improvement is lower than a minimum predetermined ε.

The final stage synthesizes a Arbitrary type-class instance for the target
data types using the optimized generation probabilities. For this stage, we
extend some functionality present in MegaDeTH in order to derive generators
parameterized by our previously optimized probabilities. Refer to Appendix 2.4
for further details on the cost functions and algorithms addressed in this section.

8 Case Studies

We start by comparing the generators for the ADT Tree derived by MegaDeTH
and Feat , presented in Section 2, with the corresponding generator derived by
DRAGEN using a uniform cost function. We used a generation size of 10 both
for MegaDeTH and DRAGEN , and a generation size of 400 for Feat—that is,
Feat will generate test cases of maximum 400 constructors, since this is the
maximum number of constructors generated by our tool using the generation
size cited above. Figure 12 shows the differences between the complexity of
the generated values in terms of the number of constructors. As shown in
Figure 3, generators derived by MegaDeTH and Feat produce very narrow
distributions, being unable to generate a diverse variety of values of different
sizes. In contrast, the DRAGEN optimized generator provides a much wider
distribution, i.e., from smaller to bigger values.

It is likely that the richer the values generated, the better the chances of
covering more code, and thus of finding more bugs. The next case studies
provide evidence in that direction.

Although DRAGEN can be used to test Haskell code, we follow the same
philosophy as QuickFuzz , targeting three complex and widely used external pro-
grams to evaluate how well our derived generators behave. These applications
are GNU bash 4.4—a widely used Unix shell, GNU CLISP 2.49—the GNU
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Figure 12: MegaDeTH (▲) vs. Feat (■) vs. DRAGEN (•) generated distribu-
tions for type Tree.

Common Lisp compiler, and giffix—a small test utility from the GIFLIB 5.1 lib-
rary focused on reading and writing Gif images. It is worth noticing that these
applications are not written in Haskell. Nevertheless, there are Haskell libraries
designed to inter-operate with them: language-bash, atto-lisp, and JuicyPixels,
respectively. These libraries provide ADT definitions which we used to syn-
thesize DRAGEN generators for the inputs of the aforementioned applications.
Moreover, they also come with serialization functions that allow us to transform
the randomly generated Haskell values into the actual test files that we used to
test each external program. The case studies contain mutually recursive and
composite ADTs with a wide number of constructors (e.g., GNU bash spans 31
different ADTs and 136 different constructors)—refer to 2.5 for a rough estim-
ation of the scale of such data types and the data types involved with them.

For our experiments, we use the coverage measure known as execution path
employed by American Fuzzy Lop (AFL) [3]—a well known fuzzer. It was
chosen in this work since it is also used in the work by Grieco et al. [71]
to compare MegaDeTH with other techniques. The process consists of the
instrumentation of the binaries under test, making them able to return the path
in the code taken by each execution. Then, we use AFL to count how many
different executions are triggered by a set of randomly generated files—also
known as a corpus. In this evaluation, we compare how different QuickCheck
generators, derived using MegaDeTH and using our approach, result in different
code coverage when testing external programs, as a function of the size of a
set of independently, randomly generated corpora. We have not been able to
automatically derive such generators using Feat , since it does not work with
some Haskell extensions used in the bridging libraries.

We generated each corpus using the same ADTs and generation sizes for
each derivation mechanism. We used a generation size of 10 for CLISP and
bash files, and a size of 5 for Gif files. For DRAGEN , we used uniform cost
functions to reduce any external bias. In this manner, any observed difference
in the code coverage triggered by the corpora generated using each derivation
mechanism is entirely caused by the optimization stage that our predictive
approach performs, which does not represent an extra effort for the programmer.
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Figure 13: Path coverage comparison between MegaDeTH (▲) and DRAGEN (•).

Moreover, we repeat each experiment 30 times using independently generated
corpora for each combination of derivation mechanism and corpus size.

Figure 13 compares the mean number of different execution paths triggered
by each pair of generators and corpus sizes, with error bars indicating 95%
confidence intervals of the mean.

It is easy to see how the DRAGEN generators synthesize test cases capable
of triggering a much larger number of different execution paths in comparison
to MegaDeTH ones. Our results indicate average increases approximately
between 35% and 41% with a standard error close to 0.35% in the number of
different execution paths triggered in the programs under test.

An attentive reader might remember that MegaDeTH tends to derive
generators which produce very small test cases. If we consider that small test
cases should take less time (on average) to be tested, is fair to think there is a
trade-off between being able to test a bigger number of smaller test cases or a
smaller number of bigger ones having the same time available. However, when
testing external software like in our experiments, it is important to consider
the time overhead introduced by the operating system. In this scenario, it
is much more preferable to test interesting values over smaller ones. In our
tests, size differences between the generated values of each tool do not result
in significant differences in the runtimes required to test each corpora—refer
to Appendix 2.5. A user is most likely to get better results by using our tool
instead of MegaDeTH , with virtually the same effort.

We also remark that, if we run sufficiently many tests, then the expected
code coverage will tend towards 100% of the reachable code in both cases.
However, in practice, our approach is more likely to achieve higher code coverage
for the same number of test cases.

9 Related Work

Fuzzers are tools to test programs against randomly generated unexpected
inputs. QuickFuzz [70], [71] is a tool that synthesizes data with rich structure,
that is, well-typed files which can be used as initial “seeds” for state-of-the-art
fuzzers—a workflow which discovered many unknown vulnerabilities. Our work
could help to improve the variation of the generated initial seeds, by varying the
distribution of QuickFuzz generators—an interesting direction for future work.

SmallCheck [68] provides a framework to exhaustively test data sets up
to a certain (small) size. The authors also propose a variation called Lazy
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SmallCheck, which avoids the generation of multiple variants which are passed
to the test, but not actually used.

QuickCheck has been used to generate well-typed lambda terms in order to
test compilers [65]. Recently, Midtgaard et al. extend such a technique to test
compilers for impure programming languages [17].

Luck [72] is a domain-specific language for writing testing properties and
QuickCheck generators at the same time. We see Luck ’s approach as orthogonal
to ours, which is mostly intended to be used when we do not know any specific
property of the system under test, although we consider that borrowing some
functionality from Luck into DRAGEN is an interesting path for future work.

Recently, Lampropoulos et al. propose a framework to automatically derive
random generators for a large subclass of Coqs’ inductively defined relations
[75]. This derivation process also provides proof terms certifying that each
derived generator is sound and complete with respect to the inductive relation
it was derived from.

Boltzmann models [76] are a general approach to randomly generating
combinatorial structures such as trees and graphs—also extended to work with
closed simply-typed lambda terms [77]. By implementing a Boltzmann sampler,
it is possible to obtain a random generator built around such models which
uniformly generates values of a target size with a certain size tolerance. However,
this approach has practical limitations. Firstly, the framework is not expressive
enough to represent complex constrained data structures, e.g. red-black trees.
Secondly, Boltzmann samplers give the user no control over the distribution of
generated values besides ensuring size-uniform generation. They work well in
theory but further work is required to apply them to complex structures [78].
Conversely, DRAGEN provides a simple mechanism to predict and tune the
overall distribution of constructors analytically at compile-time, using statically
known type information, and requiring no runtime reinforcements to ensure
the predicted distributions. Future work will explore the connections between
branching processes and Boltzmann models.

Similarly to our work, Feldt et al. propose GödelTest [79], a search-based
framework for generating biased data. It relies on non-determinism to generate
a wide range of data structures, along with metaheuristic search to optimize the
parameters governing the desired biases in the generated data. Rather than us-
ing metaheuristic search, our approach employs a completely analytical process
to predict the generation distribution at each optimization step. A strength of
the GödelTest approach is that it can optimize the probability parameters even
when there is no specific target distribution over the constructors—this allows
exploiting software behavior under test to guide the parameter optimization.

The efficiency of random testing is improved if the generated inputs are
evenly spread across the input domain [80]. This is the main idea of Adaptive
Random Testing (ART) [81]. However, this work only covers the particular
case of testing programs with numerical inputs and it has also been argued that
adaptive random testing has inherent inefficiencies compared to random testing
[82]. This strategy is later extended in [83] for object-oriented programs. These
approaches present no analysis of the distribution obtained by the heuristics
used, therefore we see them as orthogonal work to ours.
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10 Final Remarks

We discover an interplay between the stochastic theory of branching pro-
cesses and algebraic data types structures. This connection enables us to de-
scribe a solid mathematical foundation to capture the behavior of our derived
QuickCheck generators. Based on our formulas, we implement a heuristic to
automatically adjust the expected number of constructors being generated as a
way to control generation distributions.

One holy grail in testing is the generation of structured data which fulfills
certain invariants. We believe that our work could be used to enforce some
invariants on data “up to some degree.” For instance, by inspecting programs’
source code, we could extract the pattern-matching patterns from programs
(e.g., (Cons (Cons x))) and derive generators which ensure that such patterns
get exercised a certain amount of times (on average)—intriguing thoughts to
drive our future work.



Appendix

1 Demonstrations

In this appendix, we provide the formal development to show that the mean
matrix of types can be used to soundly predict the distribution of constructors.

We start by defining some terminology. First, let Tt be a data type defined
as a sum of type constructors:

Tt := Ct
1 + Ct

2 + · · ·+ Ct
n

Where each constructor is defined as a product of data types:

Ct
c := T1 × T2 × · · · × Tm

We will define the following observation functions:

cons(Tt) = {Ct
c}nc=1

args(Ct
c) = {Tj}mj=1

|Tt| = |cons(Tt)| = n

We will also define the branching factor from Cu
i to Tv as the natural number

β(Tv, C
u
i ) denoting the number of occurrences of Tv in the arguments of Cu

i :

β(Tv, C
u
i ) = |{Tk ∈ args(Cu

i ) | Tk = Tv}|

Before showing our main theorem, we need some preliminary propositions.
The following one relates the mean of reproduction of constructors with their
types and the number of occurrences in the ADT declaration.

Theorem 1. Let MC be the mean matrix for constructors for a given, possibly

mutually recursive data types {Tt}nt=1 and type constructors {Ct
i}

|Tt|
i=1. Assuming

pCt
i
to be the probability of generating a constructor Ct

i ∈ cons(Tt) whenever a

value of type T t is needed, then it holds that:

mCu
i Cv

j
= β(Tv, C

u
i ) · pCv

j
(13)

Proof. Let mCu
i Cv

j
be an element of MC , we know that mCu

i Cv
j

represents

the expected number of constructors Cv
j ∈ cons(Tv) generated whenever a
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constructor Cu
i ∈ cons(Tu) is generated. Since every constructor is composed of

a product of (possibly) many arguments, we need to sum the expected number
of constructors Cv

j generated by each argument of Cu
i of type Tv—the expected

number of constructors Cv
j generated by an argument of a type different than

Tv is null. For this, we define the random variable X
Cu

i Cv
j

k capturing the number
of constructors Cv

j generated by the k-th argument of Cu
i as follows:

X
Cu

i Cv
j

k : cons(Tv)→ N

X
Cu

i Cv
j

k (Cv
c ) =

{
1 if c = j

0 otherwise

We can calculate the probabilities of generating zero or one constructors Cv
j by

the k-th argument of Cu
i as follows:

P (X
Cu

i Cv
j

k = 0) = 1− pCv
j

P (X
Cu

i Cv
j

k = 1) = pCv
j

Then, we can calculate the expectancy of each X
Cu

i Cv
j

k :

E[X
Cu

i Cv
j

k ] = 1 · P (X
Cu

i Cv
j

k = 1) + 0 · P (X
Cu

i Cv
j

k = 0) = pCv
j

(14)

Finally, we can calculate the expected number of constructors Cv
j generated

whenever we generate a constructor Cu
i by adding the expected number of Cv

j

generated by each argument of Cu
i of type Tv:

mCu
i Cv

j
=

∑
{Tk∈args(Cu

i ) | Tk=Tv}

E[X
Cu

i Cv
j

k ]

=
∑

{Tk∈args(Cu
i ) | Tk=Tv}

pCv
j

(by (14))

= pCv
j
·

∑
{Tk∈args(Cu

i ) | Tk=Tv}

1 (pCv
j

is constant)

= pCv
j
· |{Tk ∈ args(Cv

j ) | Tk = Tv}| (
∑
S

1 = |S|)

= pCv
j
· β(Tv, C

u
i ) (by def. of β)

The next proposition relates the mean of reproduction of types with their
constructors.

Theorem 2. Let MT be the mean matrix for types for a given, possibly mutually

recursive data types {Tt}nt=1 and type constructors {Ct
i}

|Tt|
i=1. Assuming pCt

i
to

be the probability of generating a constructor Ct
i ∈ cons(Tt) whenever a value

of type Tt is needed, then it holds that:

mTuTv
=

∑
Cu

k∈cons(Tu)

β(Tv, C
u
k ) · pCu

k
(15)
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Proof. Let mTuTv be an element of MT , we know that mTuTv represents the
expected number of placeholders of type Tv generated whenever a placeholder
of type Tu is generated, i.e. by any of its constructors. Therefore, we need to
average the number of placeholders of type Tv appearing on each constructor of
Tu. For that, we introduce the random variable Y uv capturing this behavior.

Y uv : cons(Tu)→ N
Y uv(Cu

k ) = β(Tv, C
u
k )

And we can obtain mTuTv by calculating the expected value of Y uv as follows.

mTuTv
= E[Y uv]

=
∑

Cu
k ∈ cons(Tu)

β(Tv, C
u
k ) · P (Y uv = Cu

k ) (def. of E[Y uv])

=
∑

Cu
k ∈ cons(Tu)

β(Tv, C
u
k ) · pCu

k
(def. of pCu

k
)

The next proposition relates one entry in MT with its corresponding in MC .

Theorem 3. Let MC and MT be the mean matrices for constructors and types
respectively for a given, possibly mutually recursive data types {Tt}nt=1 and type

constructors {Ct
i}

|Tt|
i=1. Assuming pCt

i
to be the probability of generating a type

constructor Ct
i ∈ cons(Tt) whenever a value of type Tt is needed, then it holds

that:

pCv
i
·mTuTv =

∑
Cu

j ∈cons(Tu)

mCu
j Cv

i
· pCu

j
(16)

Proof. Let Cu
i and Cv

j be type constructors of Tu and T v respectively. Then,
by (13) and (15) we have:

mCu
i Cv

j
= β(Tv, C

u
i ) · pCv

j
(17)

mTuTv
=

∑
Cu

k∈cons(Tu)

β(Tv, C
u
k ) · pCu

k
(18)

Now, we can rewrite (17) as follows:

β(Tv, C
u
i ) =

mCu
i Cv

j

pCv
j

(if pCv
j
̸= 0) (19)
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(In the case that pCv
j

= 0, the last equation in this proposition holds trivially

by (17).) And by replacing (19) in (18) we obtain:

mTuTv
=

∑
Cu

k∈cons(Tu)

mCu
i Cv

j

pCv
j

· pCu
k

mTuTv
=

1

pCv
j

·
∑

Cu
k∈cons(Tu)

mCu
i Cv

j
· pCu

k
(pCv

j
constant)

pCv
j
·mTuTv =

∑
Cu

k∈cons(Tu)

mCu
i Cv

j
· pCu

k

Now, we proceed to prove our main result.

Theorem 4. Consider a QuickCheck generator for a (possibly) mutually

recursive data types {Tt}kt=1 and type constructors {Ct
i}

|T t|
i=1 . We assume pCt

i
as

the probability of generating a type constructor Ct
i ∈ cons(Tt) when a value of

type Tt is needed. We will call Tr (1 ≤ r ≤ k) to the generation root data type,
and MC and MT to the mean matrices for the multi-type branching process
capturing the generation behavior of type constructors and types respectively.
The branching process predicting the expected number of type constructors at
level n is governed by the formula:

E[GC
n ]T = E[GC

0 ]T ·
(
I − (MC)n+1

I −MC

)
In the same way, the branching process predicting the expected number of type
placeholders at level n is given by:

E[GT
n ]T = E[GT

0 ]T ·
(
I − (MT )n+1

I −MT

)
where GC

n denotes the constructors’ population at the level n, and GT
n denotes the

type placeholders population at the level n. The expected number of constructors
Ct

i at the n-th level is given by the expected constructors population at the n-
level E[GC

n ] indexed by the corresponding constructor. Similarly, the expected
number of placeholders of type Tt at the n-th level is given by the expected types’
population at the n-level E[GT

n ] indexed by the corresponding type. The initial
constructors population E[GC

0 ] is defined as the probability of each constructor
if it belongs to the root data type, and zero if it belongs to any other data type:

E[GC
0 ].Ct

i =

{
pCt

i
if t = r

0 otherwise

The initial type placeholders population is defined as the almost surely probability
for the root type, and zero for any other type:

E[GT
0 ].Tt =

{
1 if t = r

0 otherwise
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Finally, it holds that:

(E[GC
n ]).Ct

i = (E[GT
n ]).T t · pCt

i

In other words, the expected number of constructors Ct
i at the n-th level consists

of the expected number of placeholders of its type (i.e., Tt) at level n times the
probability to generate that constructor.

Proof. By induction on the generation size n.

• Base case
We want to prove (E[GC

0 ]).Ct
i = (E[GT

0 ]).Tt · pCt
i
.

Let Tt be a data type from the Galton-Watson branching process.

– If Tt = Tr then by the definitions of the initial type constructors
and type placeholders populations we have:

(E[CC
0 ]).Ct

i = pCt
i

(E[GT
0 ]).Tt = 1

And the theorem trivially holds by replacing (E[GC
0 ]).Ct

i and (E[GT
0 ]).Tt

with the previous equations in the goal.

– If Tt ̸= Tr then by the definitions of the initial type constructors
and type placeholders populations we have:

(E[GC
0 ]).Ct

i = 0 (E[GT
0 ]).Tt = 0

And once again, the theorem trivially holds by replacing (E[GC
0 ]).Ct

i

and (E[GT
0 ]).Tt with the previous equations in the goal.
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• Inductive case
We want to prove (E[GC

n ]).Ct
i = (E[GT

n ]).Tt · pCt
i
.

For simplicity, we will call Γ = {Tt}kt=1.

(E[GC
n ]).Ct

i

= E

∑
Tk∈Γ

 ∑
Ck

j ∈cons(Tk)

(GC
(n−1)).C

k
j ·mCk

j C
t
i

 (by G.W. proc.)

=
∑
Tk∈Γ

E

 ∑
Ck

j ∈cons(Tk)

(GC
(n−1)).C

k
j ·mCk

j C
t
i

 (by prob.)

=
∑
Tk∈Γ

 ∑
Ck

j ∈cons(Tk)

E[(GC
(n−1)).C

k
j ·mCk

j C
t
i
]

 (by prob.)

=
∑
Tk∈Γ

 ∑
Ck

j ∈cons(Tk)

E[(GC
(n−1)).C

k
j ] ·mCk

j C
t
i

 (by prob.)

=
∑
Tk∈Γ

 ∑
Ck

j ∈cons(Tk)

(E[GC
(n−1)]).C

k
j ·mCk

j C
t
i

 (by linear alg.)

=
∑
Tk∈Γ

 ∑
Ck

j ∈cons(Tk)

(E[GT
(n−1)]).Tt · pCk

j
·mCk

j C
t
i

 (by I.H.)

=
∑
Tk∈Γ

(E[GT
(n−1)]).Tt ·

∑
Ck

j ∈cons(Tk)

pCk
j
·mCk

j C
t
i

(by linear alg.)

=
∑
Tk∈Γ

(E[GT
(n−1)]).Tt · pCt

i
·mTkTt

(by (16))

=
∑
Tk∈Γ

(E[GT
(n−1)]).Tt ·mTkTt · pCt

i
(rearrange)

=
∑
Tk∈Γ

E[(GT
(n−1)).Tt] ·mTkTt

· pCk
i

(by linear alg.)

=
∑
Tk∈Γ

E[(GT
(n−1)).Tt ·mTkTt

] · pCt
i

(by prob.)

= E

[∑
Tk∈Γ

(GT
(n−1)).Tt ·mTkTt

]
· pCt

i
(by prob.)

= (E[GT
n ]).Tt · pCt

i
(by G.W. proc.)
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Figure 14: Distribution of (the amount of) T constructors induced by derive.

2 Additional Information

This appendix is meant to provide further analyses of the aspects presented
throughout this work that would not fit into the available space.

2.1 Termination Issues with Library derive

As we have introduced in Section 2, the library derive provides an easy altern-
ative to automatically synthesize random generators in compile time. However,
in the presence of recursive data types, the generators obtained with this tool
lack mechanisms to ensure termination. For instance, consider the following
data type definition and its corresponding generator obtained with derive:

data T = A | B T T | C T T

instance Arbitrary T where
arbitrary = oneof

[pure A

, B ⟨$⟩ arbitrary ⟨∗⟩ arbitrary
, C ⟨$⟩ arbitrary ⟨∗⟩ arbitrary]

When using this generator, every constructor in the obtained generator
has the same probability of being chosen. Additionally, at each point of the
generation process, if we randomly generate a recursive type constructor (either
B or C), then we also need to generate two new T values in order to fill the
arguments of the chosen type constructor. As a result, it is expected (on
average) that each time QuickCheck generates a recursive constructor (i.e., B
or C) at one level, more than one recursive constructor is generated at the next
level—thus, frequently leading to an infinite generation loop.

This behavior can be formalized using the concept known as probability
generating function, where it is proven that the extinction probability of a
generated value d (and thus the termination of the generation) can be calculated



32 ( II )

by finding the smallest fix point of the generation recurrence. In our example,
this is the smallest d such that d = PA+(PB+PC)·d2 = (1/3)+(2/3)·d2, where
Pi denotes the probability of generating a i constructor. In this case d = 1/2.

Figure 14 provides an empirical verification of this non-terminating behavior.
It shows the distribution (in terms of the number of constructors) of 100000
randomly generated T values obtained using the derive generator shown above.
The black bar on the right represents the number of values that induced an
infinite generation loop. Such values were recognized using a sufficiently big
timeout. The random generation gets stuck in an infinite generation loop
almost exactly half of the time we generate a random T value.

In practice, this non-terminating behavior gets worse as we increase either
the number of recursive constructors or the number of their recursive arguments
in the data type definition, since this increases the probability of choosing a
recursive constructor each time we need to generate a subterm.

2.2 Multi-Type Branching Processes

We will verify the soundness of the step noted as (⋆), used to deduce E[Gj
n|Gn−1]

in Section 4. In first place, note that E[Gj
n|Gn−1] can be rewritten as:

E[Gj
n|Gn−1] = E

 d∑
i=1

Gn−1∑
p=1

ξpij


Where symbol ξpij denotes the number of offspring of kind j that the parent p
of kind i produces. If the parent p has not kind i, then ξpij = 0. Essentially,
the sums simply iterate on all of the different kinds of parents present in the
nth-generation, counting the number of offspring of kind j that they produce.
Then, since the expectation of the sum is the sum of expectation, we have that:

E[Gj
n|Gn−1] =

d∑
i=1

Gn−1∑
p=1

E
[
ξpij
]

In the inner sum, some terms are 0 and others are the expected offspring of
kind j that a parent of kind i produces. As introduced in Section 4, we capture
with random variable Rij the distribution governing that a parent of kind i
produces offspring of kind j. Finally, by filtering out all the terms which are 0
in the inner sum, i.e., where p ̸= i, we obtain the expected result:

E[Gj
n|Gn−1] =

d∑
i=1

Gi
(n−1) ·E[Rij ]

2.3 Terminal Constructors

As we explained in Section 5, our tool synthesizes random generators for which
the generation of terminal constructors can be thought of two different random
processes. More specifically, the first (n − 1) generations of the branching
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Figure 15: Generation processes of non-terminal (•) and terminal (■) con-
structors.

process are composed of a mix of non-terminals and terminals constructors. The
last level, however, only contains terminal constructors since the size limit has
been reached. Figure 15 shows a graphical representation of the overall process.

2.4 Implementation

In this subsection, will give more details on the implementation of our tool.
Firstly, Figure 16 shows a schema for the automatic derivation pipeline our
tool performs. The user provides a target data type, a cost function and a
desired generation size, and our tool returns an optimized random generator.
The components marked in red are heavily dependent on Template Haskell and
refer to the type introspection and code generation stages of DRAGEN , while
the intermediate stages (in blue) are composed of our prediction mechanism
and the probabilities optimizer.

Cost Functions The probabilities optimizer that our tool implements es-
sentially works minimizing a provided cost function that encodes the desired
distribution of constructors at the optimized generator. As shown in Section 7,
DRAGEN comes with a minimal set of useful cost functions. Such functions
are built around the Chi-Square Goodness of Fit Test [84], a statistical test

Type
reification

Probabilities
optimization

Code
generation

Distribution
prediction

Optimized
generator

Target
data type

Cost
function

Generation
size

Figure 16: Generation schema.
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used to quantify how the observed value of a given phenomenon is significantly
different from its expected value:

χ2 =
∑
Ci∈Γ

(observedi − expectedi)
2

expectedi

Where Γ is a subset of the constructors involved in the generation process;
observedi corresponds to the predicted number of generated Ci constructors;
and expectedi corresponds to the amount of constructors Ci desired in the
distribution of the optimized generator. This fitness test was chosen for
empirical reasons, since it provides better results in practice when finding
probabilities that ensure certain distributions.

In this appendix, we will take special attention to the weighted cost function,
since it is the most general one that our tool provides—the remaining cost
functions provided could be expressed in terms of weighted. This function
uses our previously discussed prediction mechanism to obtain a prediction of
the constructors’ distribution under the current given probabilities and the
generation size (see obs), and uses it to calculate the Chi-Square Goodness of
Fit Test. A simplified implementation of this cost function is as follows.

weighted :: [(Name, Double)]→ CostFunction

weighted weights size probs = chiSquare obs exp

where
chiSquare = sum ◦ zipWith (λo e→ (o− e) squared / e)
obs = predict size probs

exp = map weight (Map.keys probs)
weight con = case lookup con weights of
Just w→ w ∗ size
Nothing→ 0

Note how we multiply each weight by the generation size provided by the
user (case Just w), as a simple way to control the relative size of the generated
values. Moreover, the generation probabilities for the constructors not listed
in the proportions list do not contribute to the cost (case Nothing), and thus
they can be freely adjusted by the optimizer to fit the proportions of the listed
constructors. In this light, the uniform cost function can be seen as a special
case of weighted, where every constructor is listed with weight 1.

Optimization Algorithm As introduced in Section 7, our tool makes
use of an optimization mechanism in order to obtain a suitable generation
probabilities assignment for its derived generators. Figure 17 illustrates a
simplified implementation of our optimization algorithm. This optimizer works
by selecting recursively the most suitable neighbor, i.e., a probability assignment
that is close to the current one and that minimizes the output of the provided
cost function. This process is repeated until a local minimum is found when
there are no further neighbors left to visit; or if the step improvement is below
a minimum predetermined ε.
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optimize :: CostFunction→ Size→ ProbMap→ ProbMap

optimize cost size init = localSearch init [ ]
where
localSearch focus visited

| null new = focus

| gain ⩽ ε = focus

| otherwise = localSearch best frontier

where
best = minimumBy (comparing (cost size)) new
new = neighbors focus\\(focus : visited)
frontier = new ++ visited

gain = cost size focus− cost size best

Figure 17: Optimization algorithm.

neighbors :: ProbMap→ [ProbMap]
neighbors probs = concatMap perturb (Map.keys probs)
where
perturb con = [norm (adj (+∆) con)

, norm (adj (max 0 ◦ (−∆)) con)]
norm m = fmap (/sum (Map.elems m)) m
adj f con = Map.adjust f con probs

Figure 18: Immediate neighbors of a probability distribution.

In our setting, neighbors are obtained by taking the current probability
distribution, and constructing a list of paired probability distributions, where
each one is constructed from the current distribution, adjusting each constructor
probability by ±∆. This behavior is shown in Figure 18. Note the need of bound
checking and normalization of the new neighbors in order to enforce a probability
distribution (max 0 and norm). Each pair of neighbors is then joined together
and returned as the current probability distribution immediate neighborhood.

2.5 Case Studies

As explained in Section 8, our test cases targeted three complex programs to
evaluate the power of our derivation tool, i.e. GNU CLISP 2.49, GNU bash 4.4
and GIFLIB 5.1. We derived random generators for each test case input format
using some existent Haskell libraries. Each one of these libraries contains data
types definition encoding the structure of the input format of its corresponding
test case, as well as serialization functions that we use to convert randomly
generated Haskell values into actual test input files. Table 2 illustrates the
complexity of the bridging libraries used in our case studies.
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Table 2: Type information for ADTs used in the case studies.

Case Study #Types #Constructors Composite types Mut. Rec. types

Lisp 7 14 Yes Yes
Bash 31 136 Yes Yes
Gif 16 30 Yes No

Figure 19: Execution time required to test the biggest randomly generated
corpora consisting of 1000 files.

Testing Runtimes As we have shown, MegaDeTH tends to derive generators
that produce very small test cases. However, in our tests, the size differences
in the test cases generated by each tool do not produce remarkable differences
in the runtimes required to test each corpora. Figure 19 shows the execution
time required to test each case of the biggest corpora previously generated by
each tool consisting of 1000 test cases.
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Abstract

Automatic generation of random values described by algebraic data types
(ADTs) is often a hard task. State-of-the-art random testing tools can auto-
matically synthesize random data generators based on ADTs definitions. In
that manner, generated values comply with the structure described by ADTs,
something that proves useful when testing software that expects complex in-
puts. However, it sometimes becomes necessary to generate structurally richer
ADTs values in order to test deeper software layers. In this work, we propose
to leverage static information found in the codebase as a manner to improve
the generation process. Namely, our generators are capable of considering how
programs branch on input data as well as how ADTs values are built via inter-
faces. We implement a tool, responsible for synthesizing generators for ADTs
values while providing compile-time guarantees about their distributions. Us-
ing compile-time predictions, we provide a heuristic that tries to adjust the
distribution of generators to what developers might want. We report on pre-
liminary experiments where our approach shows encouraging results.





1. INTRODUCTION 1 ( III )

1 Introduction

Random testing is a promising approach for finding bugs [19], [20], [67].
QuickCheck [16] is the dominant tool of this sort used by the Haskell com-
munity. It requires developers to specify (i) testing properties describing pro-
grams’ expected behavior and (ii) random data generators based on the types
of the expected inputs (e.g., integers, strings, etc.). QuickCheck then generates
random test cases and reports violating testing properties.

QuickCheck comes equipped with random generators for built-in types, while
it requires to manually write generators for user-defined ADTs. Recently, there
has been a proliferation of tools to automatically derive QuickCheck generators
for ADTs [29], [68], [69], [71], [85]. The main difference between these tools
lies in the guarantees provided to ensure the termination of the generation
process and the distribution of random values. Despite their differences, these
tools guarantee that generated values are well-typed. In other words, generated
values follow the structure described by ADT definitions.

Well-typed ADT values are especially useful when testing programs which
expect highly structured inputs like compilers [17], [65], [86]. Generating ADT
values also proves fruitful when looking for vulnerabilities in combination with
fuzzers [70], [71]. Despite these success stories, ADT type-definitions do not
often capture all the invariants expected from the data that they are intended
to model. As a result, even if random values are well-typed, they might not be
built with enough structure to penetrate deep software layers.

In this work, we identify two different sources of structural information
that can be statically exploited to improve the generation process of ADT
values (Section 3). Then, we show how to capture this information into our
(automatically) derived random generators. More specifically, we propose a
generation process that is capable of considering how programs branch on
input ADTs values as well as how they get manipulated by abstract interfaces
(Section 4). Furthermore, we show how to predict the expected distribution
of the ADT constructors, values fitting certain branching patterns, and calls
to interfaces that our random generators produce. For that, we extend some
recent results on applying branching processes[73]—a simple stochastic model
conceived to study population growth (Section 5). We implement our ideas as
an extension of the already existing derivation tool called DRAGEN [85]. We
call our extension as DRAGEN2 7 to make it easy the distinction for the reader.
DRAGEN2 is capable of automatically synthesizing QuickCheck generators
which produce rich ADT values, where the distributions of random values can
be adjusted at compile-time to what developers might want. Finally, we provide
empirical evaluations showing that including static information from the user
codebase improves the code coverage of two external applications when tested
using random values generated following our ideas (Section 6).

We remark that, although this work focuses on Haskell algebraic data types,
this technique is general enough to be applied to most programming languages.

7DRAGEN2 is available at http://github.com/OctopiChalmers/dragen2

http://github.com/OctopiChalmers/dragen2
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2 Background

In this section, we briefly introduce the common approach for automatically
deriving random data generators for ADTs in QuickCheck. To exemplify this,
and for illustrative purposes, let us consider the following ADT definition to
encode simple Html pages:

data Html =
Text String

| Single String

| Tag String Html

| Join Html Html

The type Html allows to build pages via four possible constructions: Text—
which represents plain text values—, Single and Tag—which represent singu-
lar and paired HTML tags, respectively—, and Join—which concatenates two
HTML pages one after another. In Haskell, Text, Single, Tag, and Join are
known as data constructors (or constructors for short) and are used to distin-
guish which variant of the ADT we are constructing. Each data constructor is
defined as a product of zero or more types known as fields. For instance, Text
has a field of type String, whereas Join has two recursive fields of type Html.
In general, we will say that a data constructor with no recursive fields is ter-
minal, and non-terminal or recursive if it has at least one field of such nature.
With this representation, the example page <html>hello<hr>bye</html> can
be encoded as:

Tag "html" (Join (Text "hello")
(Join (Single "hr")

(Text "bye")))

2.1 Type-Driven Generation of Random Values

In order to generate random ADTs values, most approaches require users to
provide a random data generator for each ADT definition. This is a cumbersome
and error-prone task that usually follows closely the structure of the ADTs. For
instance, consider the following definition of a QuickCheck random generator
for the type Html:

genHtml = sized (λsize→
if size == 0

then frequency

[ (2, Text ⟨$⟩ genString)
, (1, Single ⟨$⟩ genString)]
else frequency

[ (2, Text ⟨$⟩ genString)
, (1, Single ⟨$⟩ genString)
, (4, Tag ⟨$⟩ genString ⟨∗⟩ smaller genHtml)
, (3, Join ⟨$⟩ smaller genHtml ⟨∗⟩ smaller genHtml)])



3. SOURCES OF STRUCTURAL INFORMATION 3 ( III )

We use the Haskell syntax [ ] and (, ) for denoting lists and pairs of elements,
respectively (e.g., [(1, 2), (3, 4)] is a list of pairs of numbers.) The random gen-
erator genHtml is defined using QuickCheck ’s function sized to parameterize
the generation process up to an external natural number known as the genera-
tion size—captured in the code with variable size. This parameter is chosen
by the user, and it is used to limit the maximum amount of recursive calls that
this random generator can perform and thus ensuring the termination of the
generation process. When called with a positive generation size, this generator
can pick to generate among any Html data constructor with an explicitly gen-
eration frequency that can be chosen by the user—in this example, 2, 1, 4 and
3 for Text, Single, Tag, and Join, respectively. When it picks to generate a
Text or a Single data constructor, it also generates a random String value
using the standard QuickCheck generator genString.8 On the other hand,
when it picks to generate a Join constructor, it also generates two independent
random sub-expressions recursively, decreasing the generation size by a unit on
each recursive invocation (smaller genHtml). The case of random generation
of Tag constructors follows analogously. This random process keeps calling it-
self recursively until the generation size reaches zero, where the generator is
constrained to pick among terminal data constructors, being Text and Single

the only possible choices in our particular case.

The previous definition is rather mechanical, except perhaps for the chosen
generation frequencies. DRAGEN [85] is a tool conceived to mitigate the
problem of finding the appropriate generation frequencies. It uses the theory of
branching processes [73] to model and predict analytically the expected number
of generated data constructors. This prediction mechanism is used to feedback
a simulation-based optimization process that adjusts the generation frequency
of each data constructor in order to obtain a particular distribution of values
that can be specified by the user—thus providing a flexible testing environment
while still being mostly automated.

As many other tools for automatic derivation of generators (e.g.,[29], [68]–
[70]), DRAGEN synthesizes random generators similar to the one shown before,
where the generation process is limited to pick a single data constructor at the
time and then recursively generate each required sub-expression independently.
In practice, this procedure is often too generic to generate random data with
enough structural complexity required for testing certain applications.

3 Sources of Structural Information

In this section, we describe the motivation for considering two additional sources
of structural information which lead us to obtain better random data generators.
We proceed to exemplify the need to consider such sources with examples.

8The operators ⟨$⟩ and ⟨∗⟩ are used in Haskell to combine values obtained from calling
random generators and they are not particularly relevant to the point being made in this work.
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3.1 Branching on Input Data

To exemplify the first source of structural information, consider that we want to
use randomly generated Html values to test a function simplify ::Html→ Html.
In Haskell, the notation f ::T means that program f has type T. In our example,
function simplify takes an Html as input and produces an Html value as an
output—thus its type Html→ Html. Intuitively, the purpose of this function
is to assemble sequences of Text constructors into a single big one. More
specifically, the code of simplify is as follows:

simplify :: Html→ Html

simplify (Join (Text t1) (Text t2)) =
Text (concat t1 t2)

simplify (Join (Join (Text t1) x) y) =
simplify (Join (Text t1) (simplify (Join x y)))

simplify (Join x y) =
Join (simplify x) (simplify y)

simplify (Tag t x) =
Tag t (simplify x)

simplify x = x

Function concat just concatenates two strings. The body of simplify is
described using pattern matching over possible kinds of Html values. Pattern
matching allows defining functions idiomatically by defining different function
clauses for each input pattern we are interested in. In other words, pattern
matching is a mechanism that functions have to branch on input arguments. In
the code above, we can see that simplify patterns match against sequences of
Text constructors combined by a Join constructor—see first and second clauses.
Generally speaking, patterns can be defined to match specific constructors,
literal values or variable sub-expressions (like x in the last clause of simplify).
Patterns can also be nested in order to match very specific values.

Ideally, we would like to put approximately the same amount of effort into
testing each clause of the function simplify. However, each data constructor
is generated independently by those generators automatically derived by just
considering ADT definitions. Observe that the probability of generating a
value satisfying a nested pattern (like Join (Text t1) (Text t2)) decreases
multiplicatively with the number of constructors we simultaneously pattern
against. As evidence of that, in our tests, we found at the first two clauses of
simplify get exercised only approximately between 1.5% and 6% of the time
when using the state-of-the-art tools for automatically deriving QuickCheck
generators MegaDeTH [70] and DRAGEN [85]. Most of the generated values
were exercising the simplest clauses of our function, i.e, simplify (Join x y),
simplify (Tag t x), and simplify x.

Although the previous example might seem rather simple, branching against
specific patterns of the input data is not an uncommon task. In that light, and
in order to obtain interesting test cases, it is desirable to conceive generators
able to produce random values capable of exercising patterns with certain
frequency—Section 4 shows how to do so.
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hr :: Html
hr = Single "hr"

div :: Html→ Html

div x = Tag "div" x

bold :: Html→ Html

bold x = Tag "b" x

Figure 1: Abstract interface of the type Html.

3.2 Abstract Interfaces

A common choice when implementing ADTs is to transfer the responsibility of
preserving structural invariants to the interfaces that manipulate values of such
types. To illustrate this point, let us consider three new primitives responsible
to handle Html data as shown in Figure 1. These functions encode additional
information about the structure of Html values in the form of specific HTML
tags. Primitive hr represents the tag <hr> used to separate content in an
HTML page. Function div and bold place an Html value within the tags div

and b in order to introduce divisions and activate bold fonts, respectively. For
instance, the page <html><b>hello</b><hr>bye</html> can be encoded as:

Tag "html" (Join (bold (Text "hello"))
(Join hr (Text "bye")))

Observe that, instead of including a new data constructor for each possible
HTML tag in the Html definition (recall Section 2), we defined a minimal
general representation with a set of high-level primitives to build valid Html

tags. This programming pattern is often found in a variety of Haskell libraries.
As a consequence of this practice, generators derived by only looking into ADT
definitions often fail to synthesize useful random values, e.g., random HTML
pages with valid tags. After all, most of the valid structure of values has been
encoded into the primitives of the ADT abstract interface. When considering
the generator described in Section 2, the chances of generating a Tag value
representing a commonly used HTML tag such as div or b are extremely low.

So far, we have introduced two scenarios where derivation approaches based
only on ADT definitions are unable to capture all the available structural
information from the user codebase. Fortunately, this information can be
automatically exploited and used to generate interesting and more structured
random values. The next section introduces a model capable of encoding
structural information presented in this section into our automatically derived
random generators in a modular and flexible way.
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module M

data Html = ...

div :: Html→ Html

bold :: Html→ Html

hr :: Html

Html generation
description

HtmlADT

HtmlPatterns

HtmlInterface

⊕

⊕

Generator

⊕

⊕

Html
test cases

simplify (...) = ...

simplify (...) = ...

Structure
specification

Generator
derivation

Random
generation

User desired
distribution

Figure 2: Deriving a generator for the ADT Html with the structural information
found in module M.

4 Capturing ADTs Structure

In this section, we show how to augment the automatic process of deriving
random data generators with the structural information expressed by pattern
matchings and abstract interfaces. The key idea of this work is to represent
the different sources in an homogeneous way.

Figure 2 shows the workflow of our approach for the Html ADT. Based
on the codebase, the user of DRAGEN2 specifies: (i) the ADT definition to
consider (noted as HtmlADT), (ii) its patterns of interest (noted HtmlPatterns),
and (iii) the primitives from abstract interfaces to involve in the generation
process (noted as HtmlInterface). Our tool then automatically derives gener-
ators for each source of structural information. These generators produce
random partial ADT values in a way that it is easier to combine them in or-
der to create structurally richer ones. For instance, the generator obtained
from HtmlADT only generates constructors of the ADT but leaves the gener-
ation at the recursive fields incomplete, e.g., it generates values of the form
(Text "xA2sx"), (Single "xj32da"), (Tag "divx234jx" •) and (Join • •),
where • is a placeholder denoting a “yet-to-complete” value. Similarly, the
generator obtained from HtmlPatterns generates values satisfying the expec-
ted patterns where recursive fields are also left uncompleted, e.g., it generates
values of the form (Join (Text "xxa34") (Text "yxa123")) and (Join (Join
(Text "xd32sa") •) •). Finally, the generator derived from HtmlInterface gener-
ates calls to the interface’s primitives, where each argument of type Html is
left uncompleted, e.g., (div •) and (bold •).

Observe that partial ADT values can be combined easily and the result
is still a well-formed value of type Html. For instance, if we want to com-
bine the following random generated ADT value (Text "xx34s"), pattern
(Join (Join (Text "xd32sa") •), and interface call (div •), we can obtain the
following well-typed Html value:

Join (Join (Text "xd32sa") (div (Text "xx34s"))

Finally, our tool puts all these three generators together into one that
combines partial ADT values into fully formed ones. Importantly, the user
can specify the desired distribution of the expected number of constructors,
pattern matching values, and interface calls that the generator will produce.
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All in all, our approach offers the following advantages over usual derivation of
random generators based only on ADT definitions:

• Composability: our tool can combine different partial ADT values
arising from different structural information sources depending on what
property or sub-system becomes necessary to test using randomly gener-
ated values.

• Extensibility: the developer can specify new sources of structural
information and combine them with the existing ones simply by adding
them to the existing specification of the target ADT.

• Predictability: the tool is capable of synthesizing generators with
adjustable distributions based on developers’ demands. For instance, a
uniform distribution of pattern matching values, or a distribution where
some constructors are generated twice as often as others. We explain the
prediction of distributions in the next section.

We remark that, for space reasons, we were only able to introduce the
specification of a rather simple target ADT like Html. In practice, this reasoning
can be extended to mutually recursive and parametric ADT definitions as well.

5 Predicting Distributions

Characterizing the distribution of values of an arbitrary random generator is a
hard task. It requires modeling every random choice that a generator could
possibly make to generate a value. In a recent work [85], we have shown that it
is possible to analytically predict the average distribution of data constructors
produced by random generators automatically derived considering only ADT
definitions—like the one presented in Section 2. For this purpose, we found
that random generation of ADT values can be characterized using the theory
of branching processes [73]. This probabilistic theory was originally conceived
to predict the growth and extinction of royal family trees in the Victorian
Era, later being applied to a wide variety of research areas. In this work,
we adapt this model to predict the average distribution of values of random
generators derived considering structural information coming from functions’
pattern matchings and abstract interfaces.

Essentially, a branching process is a special kind of Markov process that mod-
els the evolution of a population of individuals of different kinds across discrete
time steps known as generations. Each kind of individual is expected to produce
an average number of offspring of (possibly) different kinds from one generation
to the next one. Mista el at. [85] show that branching processes can be adap-
ted to predict the generation of ADT values by simply considering each data
constructor as a kind of its own. In fact, any ADT value can be seen as a tree
where each node represents a root data constructor and has its sub-expressions
as sub-trees—hence note the similarity with family trees. In this light, each tree
level of a random value can be seen as a generation of individuals in this model.
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We characterize the numbers of constructors that a random generator
produces in the n-th generation as a vector Gn, a vector that groups the
number of constructors of each kind produced in that generation—in our Html
example, this vector has four components, i.e., one for each constructor. From
the branching processes theory, the following equation captures the expected
distribution of constructors at the generation n, noted E[Gn], as follows:

E[Gn]T = E[G0]T ·Mn (20)

Vector E[G0] represents the initial distribution of constructors that our
generator produces, which simply consists of the generation probability of
each one. The interesting aspect of the prediction mechanism is encoded in
the matrix M , known as the mean matrix of this stochastic process. M is
a squared matrix with as rows and columns as different data constructors
involved in the generation process. Each element Mi,j of this matrix encodes
the average number of data constructors of kind j that get generated in a
given generation, provided that we generated a constructor of kind i at the
previous one. In this sense, this matrix encodes the “branching” behavior of
our random generation from one generation to the next one. Each element of
the matrix can be automatically calculated by exploiting ADT definitions, as
well as the individual probability of generating each constructor. For instance,
the average number of Text data constructors that we will generate provided
that we generated a Join constructor on the previous level results:

MJoin,Text = 2 · pText

where 2 is the number of holes present when generating a partial ADT value
Join (i.e., Join • •) and pText is the probability of individually generating the
constructor Text. This reasoning can be used to build the rest of the mean
matrix analogously.

5.1 Extending Predictions for Structural Information

In this work, we show how to naturally fit structural information beyond
ADT definitions into the prediction mechanism of branching processes. Our
realization is that it suffices to consider each different pattern matching and
function call as a kind of individual on its own. In that manner, we can extend
our mean matrix M by adding a row and a column for each different pattern
matching and function call as shown in Figure 3. Symbol C1· · ·Ci denotes
constructors, P1· · ·Pj pattern matchings, and F1· · ·Fk function calls. The
light-red colored matrix is what we had before, whereas the light-blue colored
cells are new—we encourage readers to obtain a colored copy of this work.

The new cells are filled as before: we need to consider the number of holes
when generating partial pattern matching values and function calls as well as
their individual probabilities. For instance, if we consider Pj as the second
pattern of function simplify and F1 as function div, then the marked cell
above has the value 2 · pdiv, i.e., the number of holes in the partially generated
pattern (Join (Join (Text s) •) •), where s is some random string, times the
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□





C1 · · · Ci P1 · · · Pj F1 · · · Fk

C1
...
Ci

P1
...
Pj

F1
...
Fk

Figure 3: Mean matrix M including pattern matching and function calls
information.

probability to generate a call to function div. The rest of this matrix can be
computed analogously.

As another contribution, we found that the whole prediction process can be
factored in terms of two vectors β and P , such that β represents the number of
holes in each partial ADT value that we generate, whereas P simply represents
the probability of generating that partial ADT value. Then, the equation (20)
can be rewritten as:

E[Gn]T = βT · (β · PT )n

For instance, β and P for our generation specification of HTML values are as
shown in Figure 4. We note simplify#1 and simplify#2 to the patterns
occurring in the first and second clauses of simplify, respectively.

Note that by varying the shape of the vector P we can tune the distribution
of our random generator in a way that can be always characterized and predicted.
DRAGEN2 follows a similar approach as DRAGEN and uses a heuristic to
tune the generation probabilities of each source of structural information.
This is done by running a simulation-based optimization process at compile-
time. This process is parameterized by the desired distribution of values set

β =

0
0
1
2
0
2
0
1
1





Text

Single

Tag

Join

simplify#1

simplify#2

hr

div

bold

P =

pText
pSingle
pTag
pJoin

psimplify#1

psimplify#2

phr
pdiv
pbold




Figure 4: Prediction vectors of our Html generation specification.
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by the user. In this manner, developers can specify, for instance, a uniform
distribution of data constructors, pattern matching values and function calls
or, alternatively, a distribution of values with some constructions appearing
in a different proportion as others, e.g., two times more function calls to div

than Join constructors.

5.2 Overall Prediction

It is possible to provide an overall prediction of the expected number of con-
structors when restricting the generation process to only bare data construct-
ors and pattern matching values. To achieve that, we should stop considering
pattern matching values as atomic constructions and start seeing them as com-
positions of several data constructors. In that manner, it is possible to obtain
the expected total number of generated data constructors that our generators
will produce—regardless if they are generated on their own, or as part of a pat-
tern matching value. We note this number as E↓[ ] and, to calculate it, we only
need to add the expected number of bare constructors that are included within
each pattern matching. For instance, we can calculate the total expected num-
ber of constructors Text and Join that we will generate by simply expanding
the expected number of generated pattern matching values simplify#1 and
simplify#2 into their corresponding data constructors:

E↓[Text]= E [Text] + 2 · E[simplify#1] + 1 · E[simplify#2]

E↓[Join]= E [Join] + 1 · E[simplify#1] + 2 · E[simplify#2]

Observe that each time we generate a value satisfying the first pattern matching
of the function simplify, we add two Text and one Join data constructors
to our random value. The case of the second pattern matching of simplify
follows analogously. Note that the overall prediction cannot be applied if we
also generate random values containing function calls, as we cannot predict the
output of an arbitrary function.

6 Case Studies

This section describes two case studies showing that considering additional
structural information when deriving generators can consistently produce better
testing results in terms of code coverage. Instead of restricting our scope to
Haskell, in this work we follow a broader evaluation approach taken previously
to compare state-of-the-art techniques to derive random data generators based
on ADT definitions [71], [85].

We evaluate how including additional structural information when gener-
ating a set of random test cases (often referred to as a corpus) affects the
code coverage obtained when testing a given target program. For that, we con-
sidered two external programs which expect highly structured inputs, namely
GNU CLISP 9—the GNU Common Lisp compiler, and HTML Tidy 10—a well

9https://www.gnu.org/software/gcl/
10http://www.html-tidy.org

https://www.gnu.org/software/gcl/
http://www.html-tidy.org
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Figure 5: Path coverage comparison between DRAGEN ( ) and DRAGEN2
( ).

known HTML refactoring and correction utility. We remark that these applica-
tions are not written in Haskell. However, there exist Haskell libraries defining
ADTs encoding their input structure, i.e., Lisp and HTML values respectively.
These libraries are: hs-zuramaru11, implementing an embedded Lisp interpreter
for a small subset of this programming language, and html12, defining a com-
binator library for constructing HTML values. These libraries also come with
serialization functions to map Haskell values into corresponding test case files.

We first compiled instrumented versions of the target programs in a way
that they also return the execution path followed in the source code every time
we run them with a given input test case. This let us distinguish the number of
different execution paths that a randomly generated corpus can trigger. We then
used the ADTs defined on the chosen libraries to derive random generators using
DRAGEN and DRAGEN2 , including structural information extracted from
the library’s codebase in the case of the latter. Then, we proceeded to evaluate
the code coverage triggered by independent, randomly generated corpora of
different sizes varying from 100 to 1000 test cases each. In order to remove any
external bias, we derived generators optimized to follow a uniform distribution
of constructors (and pattern matchings or function calls in the case DRAGEN2),
and carefully adjusted their generation sizes to match the average test case size in
bytes. This way, any noticeable difference in the code coverage can be attributed
to the presence (or lack thereof) of structural information when generating the
test cases. Additionally, to achieve statistical significance we repeated each
experiment 30 times with independently generated sets of random test cases.

Figure 5 illustrates the mean number of different execution paths triggered
for different combinations of corpus size and derivation tool, including error
bars indicating the standard error of the mean on each case. We proceed to
describe each case study and our findings in detail as follows.

11http://hackage.haskell.org/package/zuramaru
12http://hackage.haskell.org/package/html

http://hackage.haskell.org/package/zuramaru
http://hackage.haskell.org/package/html
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6.1 Branching on input data

In this first case study we wanted to evaluate the observed code coverage
differences when considering structural information present in functions pattern
matchings.

Our chosen library encodes Lisp S-expressions essentially as lists of symbols,
represented as plain strings; and literal values like booleans or integers. In order
to interpret Lisp programs, this unified representation of data and code requires
this library to pattern match against common patterns like let-bindings, if-then-
else expressions and arithmetic operators among others. In particular, each
one of these patterns matches against a special symbol of the Lisp syntax like
"let", "if" or "+"; and their corresponding sub-expressions. We extracted
this structural information and included it into the generation specification
of our random Lisp values—which were generated by randomly picking from
a total of 6 data constructors and 8 different pattern matchings. By doing
this, we obtained a code coverage improvement of approximately 4% using
DRAGEN2 with respect to the one obtained with DRAGEN (see Figure 5
(a)). While it seems an small improvement, we argue that an improvement of
4% is not negligible considering (a) the little effort that took us to specify the
pattern matchings and (b) that we are testing a full-fledged compiler.

6.2 Abstract interfaces

For our second case study, we wanted to evaluate how including structural
information coming from abstract interfaces when generating random HTML
values might improve the testing performance.

The library we used for this purpose represents HTML values very much in
the same way as we exemplify in Section 2, i.e., defining a small set of general
constructions representing plain text and tags—although this library also
supports HTML tag attributes as well. Then, this representation is extended
with a large abstract interface consisting of combinators representing common
HTML tags and tag attributes—equivalent to the combinators div, bold and
hr illustrated in Section 3.

In this case study we included the structural information present in the
abstract interface of this library into the generation specification of random
HTML values, resulting in a generation process that randomly picked among
4 data constructors and 163 abstract functions. With this large amount of
additional structural information, we observed an increase of up to 83% in the
code coverage obtained with DRAGEN2 with respect to the one observed with
DRAGEN (see Figure 5 (b)). A manual inspection of the corpora generated
with each tool revealed that, in general terms, the test cases generated with
DRAGEN rarely represent syntactically correct HTML values, consisting to a
large extent of random strings within and between HTML tag delimiters ("<",
">" and "/>"). On the other hand, test cases generated with DRAGEN2 encode
much more interesting structural information, being mostly syntactically correct.
We found that, in many cases, the test cases generated with DRAGEN2 were
parsed, analyzed and reported as valid HTML values by the target application.
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With these results, we are confident that including the structural information
present on the user codebase improves the overall testing performance.

7 Related Work

Boltzmann models [76] are a general approach to randomly generating com-
binatorial structures such as trees, graphs, closed simply-typed lambda terms,
etc. A random generator built around such models uniformly generates val-
ues of a target size with a certain size tolerance. However, it has been argued
that this approach has theoretical and practical limitations in the context of
software testing [79]. In a recent work, Bendkowski et al. provide a frame-
work called boltzmann-brain to specify and synthesize standalone Haskell ran-
dom generators based on Boltzmann models [87]. This framework mixes para-
meter tuning and rejection of samples of unwanted sizes to approximate the
desired distribution of values according to user demands. The overall discard
ratio then depends on how constrained the desired sizes of values are. On the
other hand, our work is focused on approximating the desired distribution as
much as possible via parameter optimization, without discarding any generated
value at runtime. Although promising, we found difficulties to compare both
approaches in practice due that boltzmann-brain is considered a conceptual
standalone utility that produces self-contained samplers. In this light, data
specifications have to be manually written using a special syntax, and cannot
include Haskell ground types like String or Int, difficulting the integration of
this tool to existing Haskell codebases like the ones we consider in this work.

From the practical point of view, Feldt and Poulding propose GödelTest [79],
a search-based framework for generating biased data. Similar to our approach,
GödelTest works by optimizing the parameters governing the desired biases on
the generated data. However, the optimization mechanism uses meta-heuristic
search to find the best parameters at runtime. DRAGEN2 on the other hand
implements an analytic and composable prediction mechanism that is only
used at compile time to optimize the generation parameters, thus avoiding
performing any kind of runtime reinforcement.

Directed Automated Random Testing (DART) is a technique that combines
random testing with symbolic execution for C programs [88]. It requires
instrumenting the target programs in order to introduce testing assertions and
obtain feedback from previous testing executions, which is used to explore new
paths in the source code. This technique has been shown to be remarkably
useful, although it forces a strong coupling between the testing suite and the
target code. Our tool intends to provide better random generation of values
following an undirected fashion, without having to instrument the target code,
but still extracting useful structural information from it.

8 Final Remarks

We extended the standard approach for automatically deriving random generat-
ors in Haskell. Our generators are capable of producing complex and interesting
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random values by exploiting static structural information found in the user code-
base. Based on the theory of branching processes, we adapt our previous predic-
tion mechanism to characterize the distribution of random values representing
the different sources of structural information that our generators might produce.
These predictions let us optimize the generation parameters in compile time,
resulting in an improved testing performance according to our experiments.
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Abstract

Generating good random values described by algebraic data types is often quite
intricate. State-of-the-art tools for synthesizing random generators serve the
valuable purpose of helping with this task, while providing different levels of
invariants imposed over the generated values. However, they are often not
built for composability nor extensibility, a useful feature when the shape of
our random data needs to be adapted while testing different properties or sub-
systems.

In this work, we develop an extensible framework for deriving compositional
generators, which can be easily combined in different ways in order to fit
developers’ demands using a simple type-level description language. Our
framework relies on familiar ideas from the à la Carte technique for writing
composable interpreters in Haskell. In particular, we adapt this technique
with the machinery required in the scope of random generation, showing
how concepts like generation frequency or terminal constructions can also be
expressed in the same type-level fashion. We provide an implementation of our
ideas, and evaluate its performance using real-world examples.
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1 Introduction

Random property-based testing is a powerful technique for finding bugs [17],
[19], [20], [67]. In Haskell, QuickCheck is the predominant tool for this task [16].
The developers specify i) the testing properties their systems must fulfill, and
ii) random data generators (or generators for short) for the data types involved
at their properties. Then, QuickCheck generates random values and uses
them to evaluate the testing properties in search of possible counterexamples,
which always indicate the presence of bugs, either in the program or in the
specification of our properties.

Although QuickCheck provides default generators for the common base
types, like Int or String, it requires implementing generators for any user-
defined data type we want to generate. This process is cumbersome and error-
prone, and commonly follows closely the shape of our data types. Fortunately,
there exists a variety of tools helping with this task, providing different levels
of invariants on the generated values as well as automation [29], [70], [72], [85].
We divide the different approaches into two kinds: those which are manual,
where generators are often able to enforce a wide range of invariants on the
generated data, and those which are automatic where the generators can only
guarantee lightweight invariants like generating well-typed values.

On the manual side, Luck [72] is a domain-specific language for manually
writing testing properties and random generators in tandem. It allows obtaining
generators specialized to produce random data which is proven to satisfy the
preconditions of their corresponding properties. In contrast, on the automatic
side, tools like MegaDeTH [70], [71], DRAGEN [85] and Feat [29] allow
obtaining random generators automatically at compile time. MegaDeTH and
DRAGEN derive random generators following a simple recipe: to generate a
value, they simply pick a random data constructor from our data type with a
given probability, and proceed to generate the required sub-terms recursively.
MegaDeTH pays no attention to the generation frequencies, nor the distribution
induced by the derived generator—it just picks among data constructors with
uniform probability. Differently, DRAGEN analyzes type definitions and tunes
the generation frequencies to match the desired distribution of random values
specified by developers. Finally, Feat relies on functional enumerations, deriving
random generators that sample random values uniformly across the whole
search space of values of up to a given size of the data type under consideration.
In this work, we focus on automatic approaches to derive generators.

While MegaDeTH, DRAGEN, and Feat provide a useful mechanism for
automating the task of writing random generators by hand, they implement a
derivation procedure which is often too generic to synthesize useful generators in
common scenarios, mostly because they only consider the structural information
encoded in type definitions. To illustrate this point, consider the following
type definition encoding basic HTML pages—inspired by the widely used html
package:13

13http://hackage.haskell.org/package/html

http://hackage.haskell.org/package/html
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data Html =
Text String

| Sing String

| Tag String Html

| Html :+: Html

This type allows building HTML pages via four possible data constructors:
Text is used for plain text values; Sing and Tag represent singular and paired
HTML tags, respectively; whereas the infix (:+:) constructor simply concat-
enates two HTML pages one after another. Note that the constructors Tag

and (:+:) are recursive, as they have at least one field of type Html. Then, the
example page:

<html>hi<br><b>bye</b></html>

can be encoded with the following Html value:

Tag "html" (Text "hi" :+: Sing "br" :+: Tag "b" (Text "bye"))

In this work, we focus on two scenarios where deriving generators following
only the information extracted from type definitions does not work well. The
first case is when type definitions are too general (like the case of Html) where, as
a consequence, the generation process leaves a large room for ill-formed values,
e.g., invalid HTML pages. For instance, when generating an Html value using
the Sing constructor, it is very likely that an automatically derived generator
will choose a random string not corresponding to any valid HTML singular tag.
In such situations, a common practice is to rely on existing abstract interfaces
to generate random values—such interfaces are often designed to preserve our
desired invariants. As an example, consider that our Html data type comes
equipped with the following abstract interface:

br :: Html
bold :: Html→ Html

list :: [Html ]→ Html

(⟨+⟩) :: Html→ Html→ Html

These high-level combinators let us represent structured HTML constructions
like line breaks (br), bold blocks (bold), unordered lists (list) and concat-
enation of values one below another (⟨+⟩). This methodology of generating
random data employing high-level combinators has shown to be particularly
useful in the presence of monadic code [57], [71].

The second scenario that we consider is where derived generators fail to
produce very specific patterns of values which might be needed to trigger bugs.
For instance, a function for simplifying Html values might be defined to branch
differently over complex sequences of Text and (:+:) constructors:

simplify :: Html→ Html

simplify (Text t1 :+: Text t2) = · · ·
simplify (Text t :+: x :+: y) = · · ·
simplify · · · = · · ·
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(Symbol · · · denotes code that is not relevant for the point being made.) Gen-
erating values that match, for instance, the pattern Text t :+: x :+: y using
DRAGEN under a uniform distribution will only occur 6% of the time! Clearly,
these input pattern matchings should also be included into our generators, al-
lowing them to produce random values satisfying such inputs. This structural
information can help increase the chances of reaching portions of our code which
otherwise would be very difficult to test. Functions’ pattern matchings often
expose interesting relationships between multiple data constructors, a valuable
asset for testing complex systems expecting highly structured inputs [86].

Our previous work [89] focuses on extending DRAGEN ’s generators as
well as its predictive approach to include all these extra sources of structural
information, namely high-level combinators and functions’ input patterns, while
allowing tuning the generation parameters based on the developers’ demands.
In turn, this work focuses on an orthogonal problem: that of modularity.
In essence, all the automatic tools cited above work by synthesizing rigid
monolithic generator definitions. Once derived, these generators have almost
no parameters available for adjusting the shape of our random data. Sadly, this
is something we might want to do if we need to test different properties or sub-
systems using random values generated in slightly different ways. As the reader
might appreciate, it can become handy to cherry-pick, for each situation, which
data constructors, abstract interface functions, or functions’ input patterns to
consider when generating random values.

The contribution of this work is an automated framework for synthesizing
compositional random generators, which can be naturally extended to include
the extra sources of structural information mentioned above. Using our ap-
proach, a user can obtain random generators following different generation
specifications whenever necessary, all of them built upon the same underlying
machinery which only needs to be derived once.

Figure 1 illustrates a possible usage scenario of our approach. We first
invoke a derivation procedure (1a) to extract the structural information of
the type Html encoded on i) its data constructors, ii) its abstract interface,
and iii) the patterns from the function simplify. Then, two different gen-
eration specifications, namely Htmlvalid and Htmlsimplify can be defined us-
ing a simple type-level idiom (1b). Each specification mentions the different
sources of structural information to consider, along with (perhaps) their re-
spective generation frequency. Intuitively, Htmlvalid chooses among the con-
structors Text and :+: , as well as functions from Html’s abstract interface;
while Htmlsimplify chooses among all Html’s constructors and the patterns of
the first and second clauses in the function simplify. The syntax used there
will be addressed in detail in Sections 3 to 5. Finally, we obtain two concrete
random generators following such specifications by writing genRep @Htmlvalid
and genRep @Htmlsimplify, respectively.

The main contributions of this paper are:

• We present an extensible mechanism for representing random values built
upon different sources of structural information, adopting ideas from
Data Types à la Carte [90] (Section 3).
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derive [constructors ′′Html, interface ′′Html, patterns ′simplify]

(a) Machinery derivation

type Htmlvalid =
Con "Text" ⊗ 2

⊕ Con ":+:" ⊗ 4

⊕ Fun "hr" ⊗ 3

⊕ Fun "bold" ⊗ 2

⊕ Fun "list" ⊗ 3

⊕ Fun "<+>" ⊗ 5

type Htmlsimplify =
Con "Text" ⊗ 2

⊕ Con "Sing" ⊗ 1

⊕ Con "Tag" ⊗ 3

⊕ Con ":+:" ⊗ 4

⊕ Pat "simplify" 1 ⊗ 3

⊕ Pat "simplify" 2 ⊗ 5

genHtmlvalid = genRep @Htmlvalid
genHtmlsimplify = genRep @Htmlsimplify

(b) Generators specification

Figure 1: Usage example of our framework. Two random generators obtained
from the same underlying machinery.

• We develop a modular generation scheme, extending our representation
to encode information relevant to the generation process at the type level
(Section 4).

• We propose a simple type-level idiom for describing extensible generators,
based on the types used to represent the desired shape of our random
data (Section 5).

• We provide a Template Haskell tool14 for automatically deriving all the
required machinery presented throughout this paper, and evaluate its
generation performance with three real-world case studies and a type-
level runtime optimization (Section 6).

Overall, we present a novel technique for reusing automatically derived generat-
ors in a composable fashion, in contrast to the usual paradigm of synthesizing
rigid, monolithic generators.

2 Random Generators in Haskell

In this section, we introduce the common approach for writing random gen-
erators in Haskell using QuickCheck, along with the motivation for including
extra information into our generators, discussing how this could be naively
implemented in practice.

14Available at https://github.com/OctopiChalmers/dragen2

https://github.com/OctopiChalmers/dragen2
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In order to provide a common interface for writing generators, QuickCheck
uses Haskell’s overloading mechanism known as type classes [27], defining the
Arbitrary class for random generators as:

class Arbitrary a where
arbitrary :: Gen a

where the overloaded symbol arbitrary :: Gen a denotes a monadic generator
for values of type a. Using this mechanism, a user can define a sensible random
generator for our Html data type as follows:

instance Arbitrary Html where
arbitrary = sized gen

where
gen 0 = frequency

[ (2, Text ⟨$⟩ arbitrary)
, (1, Sing ⟨$⟩ arbitrary)]

gen d = frequency

[ (2, Text ⟨$⟩ arbitrary)
, (1, Sing ⟨$⟩ arbitrary)
, (4, Tag ⟨$⟩ arbitrary ⟨∗⟩ gen (d− 1))
, (3, (:+:) ⟨$⟩ gen (d− 1) ⟨∗⟩ gen (d− 1))]

At the top level, this definition parameterizes the generation process using
QuickCheck ’s sized combinator, which lets us build our generator via an
auxiliary, locally defined function gen::Int→ Gen Html. The Int passed to gen

is known as the generation size, and is threaded seamlessly by QuickCheck on
each call to arbitrary. We use this parameter to limit the maximum amount of
recursive calls that our generator can perform, and thus the maximum depth of
the generated values. If the generation size is positive (case gen d), our generator
picks a random Html constructor with a given generation frequency (denoted
here by the arbitrarily chosen numbers 2, 1, 4 and 3) using QuickCheck ’s
frequency combinator. Then, our generator proceeds to fill its fields using
randomly generated sub-terms—here using Haskell’s applicative notation [48]
and the default Arbitrary instance for Strings. For the case of the recursive
sub-terms, this generator simply calls the function gen recursively with a
smaller depth limit (gen (d− 1)). This process repeats until we reach the base
case (gen 0) on each recursive sub-term. At this point, our generator is limited
to picking only among terminal Html constructors, hence ending the generation
process.

As one can observe, the previous definition is quite mechanical, and depends
only on the generation frequencies we choose for each constructor. This simple
generation procedure is the one used by tools like MegaDeTH or DRAGEN
when synthesizing generators.

2.1 Abstract Interfaces

A common choice when implementing abstract data types is to transfer the
responsibility of preserving their invariants to the functions on their abstract
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interface. Take for example our Html data type. Instead of defining a different
constructor for each possible HTML construction, we opted for a small generic
representation that can be extended with a set of high-level combinators:

br :: Html
br = Sing "br"

bold :: Html→ Html

bold = Tag "b"

list :: [Html ]→ Html

list [ ] = Text "empty list"

list xs = Tag "ul" (foldl1 (:+:) (Tag "li" ⟨$⟩ xs))

(⟨+⟩) :: Html→ Html→ Html

(⟨+⟩) x y = x :+: br :+: y

Note how difficult it would be to generate random values containing, for example,
structurally valid HTML lists, if we only consider the structural information
encoded in our Html type definition. After all, much of the valid structure of
HTML has been encoded in its abstract interface.

A synthesized generator could easily contemplate this structural information
by creating random values arising from applying such functions to randomly
generated inputs:

instance Arbitrary Html where
arbitrary = · · ·
frequency

[ ...
, (1, pure br)
, (5, bold ⟨$⟩ gen (d− 1))
, (2, list ⟨$⟩ listOf (gen (d− 1)))
, (3, (⟨+⟩) ⟨$⟩ gen (d− 1) ⟨∗⟩ gen (d− 1))]

where (...) represents the rest of the code of the random generator introduced
before. From now on, we will refer to each choice given to the frequency

combinator as a different random construction, since we are not considering
generating only single data constructors anymore, but more general value
fragments.

2.2 Functions’ Pattern Matchings

A different challenge appears when we try to test functions involving complex
pattern matchings. Consider, for instance, the full definition of the function
simplify introduced in Section 1:

simplify :: Html→ Html

simplify (Text t1 :+: Text t2) = Text (t1 ++ t2)
simplify (Text t :+: x :+: y) =
simplify (Text t :+: simplify (x :+: y))

simplify (x :+: y) = simplify x :+: simplify y
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simplify (Tag t x) = Tag t (simplify x)
simplify x = x

This function traverses Html values, joining together every contiguous pair of
Text constructors. Ideally, we would like to put approximately the same testing
effort into each clause of simplify, or perhaps even more to the first two ones,
since those are the ones performing actual simplifications. However, these
two clauses are the most difficult ones to test in practice! The probability of
generating a random value satisfying nested patterns decreases multiplicatively
with the number of constructors we simultaneously pattern match against. In
our tests, we were not able to exercise any of these two patterns more than
6% of the overall testing time, using random generators derived using both
MegaDeTH and DRAGEN. As expected, most of the random test cases were
exercising the simplest (and rather uninteresting) patterns of this function.

To solve this issue, we could opt to consider each complex pattern as a
new kind of random construction. In this light, we can simply generate values
satisfying patterns directly by returning their corresponding expressions, where
each variable or wildcard pattern is filled using a random sub-expression:

instance Arbitrary Html where
arbitrary = · · ·
frequency

[ ...
, (2,do t1 ← arbitrary

t2 ← arbitrary

return (Text t1 :+: Text t2))
, (4,do t← arbitrary

x← gen (d− 1)
y← gen (d− 1);
return (Text t :+: x :+: y))]

While the ideas presented in this section are plausible, accumulating cruft
from different sources of structural information into a single, global Arbitrary
instance is unwieldy, especially if we consider that some random constructions
might not be relevant or desired in many cases, e.g., generating the patterns of
the function simplify might only be useful when testing properties involving
such function, and nowhere else.

In contrast, the following sections of this paper present our extensible
approach for deriving generators, where the required machinery is derived once,
and each variant of our random generators is expressed on a per-case basis.

3 Modular Random Constructions

This section introduces a unified representation for the different constructions
we might want to consider when generating random values. The key idea of
this work is to lift each different source of structural information to the type
level. In this light, the shape of our random data is determined entirely by the
types we use to represent it during the generation process.
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For this purpose, we will use a set of simple “open” representation types,
each one encoding a single random construction from our target data type,
i.e., the actual data type we want to randomly generate. These types can be
i) combined in several ways depending on the desired shape of our test data
(applying the familiar à la Carte technique); ii) randomly generated (see Section
4); and finally, iii) transformed to the corresponding values of our target data
type automatically. This representation can be automatically derived from our
source code at compile time, relieving programmers of the burden of manually
implementing the required machinery.

3.1 Representing Data Constructors

When generating values of algebraic data types, the simplest piece of meaningful
information we ought to consider is the one given by each one of its constructors.
In this light, each constructor of our target type can be represented using a
single-constructor data type. Recalling our Html example, its constructors can
be represented as:

data ConText r = MkText String

data ConSing r = MkSing String

data ConTag r = MkTag String r

data Con(:+:) r = Mk(:+:) r r

Each representation type has the same fields as its corresponding constructor,
except for the recursive ones which are abstracted away using a type parameter
r. This parametricity lets us leave the type of recursive sub-terms unspecified
until we have decided on the final shape of our random data. Then, for instance,
the value MkTag "div" x :: ConTag r represents the Html value Tag "div" x, for
some sub-term x :: r that can be transformed to Html as well. Note how these
representations types encode the minimum amount of information they need,
leaving everything else unspecified.

An important property of these parametric representations is that, in most
cases, they form a functor over its type parameter, thus we can use Haskell’s
deriving mechanism to obtain suitable Functor instances for free—this will
be useful for the next steps.

The next building block of our approach consists of providing a mapping
from each constructor representation to its corresponding target value, provided
that each recursive sub-term has already been translated to its corresponding
target value. This notion is often referred to as an F-Algebra over the functor
used to represent each different construction. Accordingly, to represent this
mapping, we will define a type class Algebra with a single method alg as
follows:

class Functor f⇒ Algebra f a | f→ a where
alg :: f a→ a

where f is the functor type used to represent a construction of the target type
a. The functional dependency f→ a helps the type system to solve the type
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of the type variable a, which appears free on the right hand side of the ⇒.
This means that every representation type f will uniquely determine its target
type a. Then, we need to instantiate this type class for each data constructor
representation we are considering, providing an appropriate implementation
for the overloaded alg function:

instance Algebra ConText Html where
alg (MkText x) = Text x

instance Algebra ConSing Html where
alg (MkSing x) = Sing x

instance Algebra ConTag Html where
alg (MkTag t x) = Tag t x

instance Algebra Con(:+:) Html where
alg (Mk(:+:) x y) = x :+: y

There, we simply transform each constructor representation into its correspond-
ing data constructor, piping its fields unchanged.

3.2 Composing Representations

So far we have seen how to represent each data constructor of our Html data
type independently. In order to represent interesting values, we need to be able
to combine single representations into (possibly complex) composite ones. For
this purpose, we will define a functor type ⊕ to encode the choice between two
given representations:

data ((f :: ∗ → ∗)⊕ (g :: ∗ → ∗)) r = InL (f r) | InR (g r)

This infix type-level operator lets us combine two representations f and g into
a composite one f ⊕ g, encoding either a value drawn from f (via the InL
constructor) or a value drawn from g (via the InR constructor). This operator
works pretty much in the same way as Haskell’s Either data type, except that,
instead of combining two base types, it works by combining two parametric
type constructors, hence the kind signature ∗ → ∗ in both f and g. For instance,
the type ConText⊕ ConTag encodes values representing either plain text HTML
or paired tags. Such values can be constructed using the injections InL and
InR on each case, respectively.

The next step consists of providing a mapping from composite representa-
tions to target types, provided that each component can be translated into the
same target type:

instance (Algebra f a, Algebra g a)⇒ Algebra (f⊕ g) a where
alg (InL fa) = alg fa

alg (InR ga) = alg ga

There, we use the appropriate Algebra instance of the inner representation,
based on the injection used to create the composite value.
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Worth remarking, the order in which we associate each operand of ⊕ results
semantically irrelevant. However, in practice, associativity takes a dramatic
role when it comes to generation speed. This phenomenon is addressed in detail
in Section 6.

3.3 Tying the Knot

Even though we have already seen how to encode single and composite repres-
entations for our target data types, there is a piece of machinery still missing:
our representations are not recursive, but parametric on their recursive fields.
We can think of them as encoding a single layer of our target data. In order
to represent recursive values, we need to close them tying the knot recursively,
i.e., once we have fixed a suitable representation type for our target data, each
one of its recursive fields has to be instantiated with itself. This can be easily
achieved by using a type-level fixed point operator:

data Fix (f :: ∗ → ∗) = Fix {unFix :: f (Fix f)}

Given a representation type f of kind ∗ → ∗, the type Fix f instantiates each
recursive field of f with Fix f, closing the definition of f into itself—thus the
kind of Fix f results ∗.

In general, if a type f is used to represent a given target type, we will
refer to Fix f as a final representation, since it cannot be further combined or
extended—the ⊕ operator has to be applied within the Fix type constructor.

The effect of a fixed point combinator is easier to interpret with an example.
Let us imagine we want to represent our Html data type using all of its data
constructors, employing the following type:

type Html′ = ConText⊕ ConSing⊕ ConTag⊕ Con(:+:)

Then, for instance, the value x = Text "hi" :+: Sing "hr" :: Html can be
represented with a value x′ :: Fix Html′ as:

x′ = Fix (InR (InR (InR (Mk(:+:)

(Fix (InL (MkText "hi")))
(Fix (InR (InL (MkSing "hr"))))))))

where the sequences of InL and InR data constructors inject each value from
an individual representation into the appropriate position of our composite
representation Html′.

Finally, we can define a generic function eval to evaluate any value of a
final representation type Fix f into its corresponding value of the target type
a as follows:

eval :: Algebra f a⇒ Fix f→ a

eval = alg ◦ fmap eval ◦ unFix

This function exploits the Functor structure of our representations, unwrapping
the fixed points and mapping their algebras to the result of evaluating recursively
each recursive sub-term.
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In our particular example, this function satisfies eval x′ == x. More
specifically, the types Html and Fix Html′ are in fact isomorphic, with eval as
the witness of one side of this isomorphism—though this is not the case for
any arbitrary representation.

3.4 Representing Additional Constructions

The representation mechanism we have developed so far lets us determine the
shape of our target data based on the type we use to represent its constructors.
However, it is hardly useful for random testing, as the values we can represent
are still quite unstructured. It is not until we start considering more complex
constructions that this approach becomes particularly appealing.

3.4.1 Abstract Interfaces

Let us consider the case of generating values obtained by abstract interface
functions. If we recall our Html example, the functions on its abstract interface
can be used to obtain Html values based on different input arguments. Fortu-
nately, it is easy to extend our approach to incorporate the interesting structure
arising from these functions into our framework. As before, we start by defin-
ing a set of open data types to encode each function as a random construction:

data Funbr r = Mkbr
data Funbold r = Mkbold r

data Funlist r = Mklist [r ]
data Fun⟨+⟩ r = Mk⟨+⟩ r r

Each data type represents a value resulting from evaluating its corresponding
function, using the values encoded on its fields as input arguments. Once
again, we replace each recursive field (representing a recursive input argument)
with a type parameter r in order to leave the type of the recursive sub-terms
unspecified until we have decided on the final shape of our data.

By representing values obtained from function application this way, we are
not performing any actual computation—we simply store the functions’ input
arguments. Instead, these functions are evaluated when transforming each
representation into its target type, by the means of an Algebra:

instance Algebra Funbr Html where
alg Mkbr = br

instance Algebra Funbold Html where
alg (Mkbold x) = bold x

instance Algebra Funlist Html where
alg (Mklist xs) = list xs

instance Algebra Fun⟨+⟩ Html where
alg (Mk⟨+⟩ x y) = x ⟨+⟩ y

Where we simply return the result of evaluating each corresponding function,
using its representation fields as input arguments.
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It is important to remark that this approach inherits any possible downside
from the functions we use to represent our target data. In particular, repres-
enting non-terminating functions might produce a non-terminating behavior
when calling the eval function.

3.4.2 Functions’ Pattern Matchings

The second source of structural information that we consider in this work is the
one present in functions’ pattern matchings. If we recall our simplify function,
we can observe it has two complex, non-trivial patterns that we might want to
satisfy when generating random values. We can extend our approach in order
to represent these patterns as well. We start by defining data types for each one
of them, this time using the fields of each single data constructor to encode the
free pattern variables (or wildcards) appearing on its corresponding pattern:

data Patsimplify#1 r = Mksimplify#1 String String

data Patsimplify#2 r = Mksimplify#2 String r r

where the number after the # distinguishes the different patterns from the
function simplify by the index of the clause they belong to. As before, we
abstract away every recursive field (corresponding to a recursive pattern variable
or wildcard) with a type variable r.

Then, the Algebra instance of each pattern will expand each representation
into the corresponding target value resembling such a pattern, where each
pattern variable gets instantiated using the values stored in its representation
field:

instance Algebra Patsimplify#1 Html where
alg (Mksimplify#1 t1 t2) = Text t1 :+: Text t2

instance Algebra Patsimplify#2 Html where
alg (Mksimplify#1 t x y) = Text t :+: x :+: y

3.5 Lightweight Invariants for Free!

Using the machinery presented so far, we can represent the values of our target
data coming from different sources of structural information in a compositional
way.

Using this simple mechanism we can obtain values exposing light-weight
invariants very easily. For instance, a value of type Html might encode invalid
HTML pages if we construct them using invalid tags in the process (via the
Sing or Tag constructors). To avoid this, we can explicitly disallow the direct
use of the Sing and Tag constructors, replacing them with safe constructions
from its abstract interface. In this light, a value of type:

ConText ⊕ Con(:+:) ⊕ Funbr ⊕ Funbold ⊕ Funlist ⊕ Fun⟨+⟩

always represents a valid HTML page.
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Similarly, we can enforce that every Text constructor within a value will
always appear in pairs of two, by using the following type:

ConSing ⊕ ConTag ⊕ Con(:+:) ⊕ Patsimplify#1

Since the only way to place a Text constructor within a value of this type is via
the construction Patsimplify#1, which always contains two consecutive Texts.

As a consequence, generating random data exposing such invariants will
simply become using an appropriate representation type while generating
random values, without having to rely on runtime reinforcements of any sort.
The next section introduces a generic way to generate random values from our
different representations, extending them with a set of combinators to encode
information relevant to the generation process directly at the type level.

4 Generating Random Constructions

So far we have seen how to encode different random constructions representing
interesting values from our target data types. Such representations follow
a modular approach, where each construction is independent from the rest.
This modularity allows us to derive each different construction representation
individually, as well as to specify the shape of our target data in simple and
extensible manner.

In this section, we introduce the machinery required to randomly generate
the values encoded using our representations. This step also follows the modular
fashion, resulting in a random generation process that is entirely compositional.
In this light, our generators are built from simpler ones (each one representing
a single random construction), and are solely based on the types we use to
represent the shape of our random data.

Ideally, our aim is to be able to obtain random generators with a behavior
similar to the one presented for Html in Section 2. If we take a closer look at
its definition, there we can observe three factors happening simultaneously:

• We use QuickCheck ’s generation size to limit the depth of the generated
values, reducing it by one on each recursive call of the local auxiliary
function gen.

• We differentiate between terminal and non-terminal (i.e. recursive)
constructors, picking only among terminal ones when we have reached
the maximum depth (case gen 0).

• We generate different constructions with different frequencies.

For the rest of this section, we will focus on modeling these aspects in our mod-
ular framework, in such a way that does not compromise the compositionality
obtained so far.
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4.1 Depth-Bounded Modular Generators

The first obstacle that arises when trying to generate random values with a lim-
ited depth using our approach is related to modularity. If we recall the random
generator for Html from Section 2 we can observe that the depth parameter d
is threaded to the different recursive calls of our generator, always within the
scope of the local function gen. Since each construction will have a specialized
random generator, we cannot group them as we did before using an internal
gen function. Instead, we will define a new type for depth-bounded generators,
wrapping QuickCheck ’s Gen type with an external parameter representing the
maximum recursive depth:

type BGen a = Int→ Gen a

A BGen is, essentially, a normal QuickCheck Gen with the maximum recurs-
ive depth as an input parameter. Using this definition, we can generalize
QuickCheck ’s Arbitrary class to work with depth-bounded generators simply
as follows:

class BArbitrary (a :: ∗) where
barbitrary :: BGen a

From now on, we will use this type class as a more flexible substitute of
Arbitrary, given that now we have two parameters to tune: the maximum
recursive depth, and the QuickCheck generation size. The former is useful for
tuning the overall size of our random data, whereas the latter can be used for
tuning the values of the leaf types, such as the maximum length of the random
strings or the biggest/smallest random integers.

Here we want to remark that, even though we could have used QuickCheck ’s
generation size to simultaneously model the maximum recursive depth and the
maximum size of the leaf types, doing so would imply generating random values
with a decreasing size as we move deeper within a random value, obtaining for
instance, random trees with all zeroes on their leaves, or random lists skewed
to be ordered in decreasing order. In addition, one can always obtain a trivial
Arbitrary instance from a BArbitrary one, by setting the maximum depth
to be equal to QuickCheck ’s generation size:

instance BArbitrary a⇒ Arbitrary a where
arbitrary = sized barbitrary

Even though this extension allows QuickCheck generators to be depth-aware,
here we also need to consider the parametric nature of our representations.
In the previous section, we defined each construction representation as being
parametric on the type of its recursive sub-terms, as a way to defer this
choice until we have specified the final shape of our target data. Hence, each
construction representation is of kind ∗ → ∗. If we want to define our generators
in a modular way, we also need to parameterize somehow the generation of the
recursive sub-terms! If we look at QuickCheck, this library already defines a
type class Arbitrary1 for parametric types of kind ∗ → ∗, which solves this
issue by receiving the generator for the parametric sub-terms as an argument:
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class Arbitrary1 (f :: ∗ → ∗) where
liftArbitrary :: Gen a→ Gen (f a)

Then, we can use this same mechanism for our modular generators, extending
Arbitrary1 to be depth-aware as follows:

class BArbitrary1 (f :: ∗ → ∗) where
liftBGen :: BGen a→ BGen (f a)

Note the similarities between Arbitrary1 and BArbitrary1. We will use
this type class to implement random generators for each construction we are
automatically deriving. Recalling our Html example, we can define modular
random generators for the constructions representing its data constructors as
follows:

instance BArbitrary1 ConText where
liftBGen bgen d = MkText ⟨$⟩ arbitrary

instance BArbitrary1 ConSing where
liftBGen bgen d = MkSing ⟨$⟩ arbitrary

instance BArbitrary1 ConTag where
liftBGen bgen d = MkTag ⟨$⟩ arbitrary ⟨∗⟩ bgen (d− 1)

instance BArbitrary1 Con(:+:) where
liftBGen bgen d = Mk(:+:) ⟨$⟩ bgen (d− 1) ⟨∗⟩ bgen (d− 1)

Note how each instance is defined to be parametric of the maximum depth
(using the input integer d) and of the random generator used for the recursive
sub-terms (using the input generator bgen). Every other non-recursive sub-
term can be generated using a normal Arbitrary in-stance—we use this to
generate random Strings in the previous definitions.

The rest of our representations can be generated analogously. For example,
the BArbitrary1 instances for Funbold and Patsimplify#2 are as follows:

instance BArbitrary1 Funbold where
liftBGen bgen d = Mkbold ⟨$⟩ bgen (d− 1)

instance BArbitrary1 Patsimplify#2 where
liftBGen bgen d =
Mksimplify#2 ⟨$⟩ arbitrary ⟨∗⟩ bgen (d− 1) ⟨∗⟩ bgen (d− 1)

Then, having the modular generators for each random construction in
place, we can obtain a concrete depth-aware generator (of kind ∗) for any final
representation Fix f as follows:

instance BArbitrary1 f⇒ BArbitrary (Fix f) where
barbitrary d = Fix ⟨$⟩ liftBGen barbitrary d

There, we use the BArbitrary1 instance of our representation f to generate
sub-terms recursively by lifting itself as the parameterized input generator
(liftBGen barbitrary), wrapping each recursive sub-term with a Fix data
constructor.
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The machinery developed so far lets us generate single random construc-
tions in a modular fashion. However, we still need to develop our generation
mechanism a bit further in order to generate composite representations built
using the ⊕ operator. This is the objective of the next sub-section.

4.2 Encoding Generation Behavior Using Types

As we have seen so far, generating each representation is rather straightforward:
there is only one data constructor to pick, and every field is generated using
a mechanical recipe. In our approach, most of the generation complexity is
encoded in the random generator for composite representations, built upon the
⊕ operator. Before introducing it, we need to define some additional machinery
to encode the notions of terminal construction and generation frequency.

Recalling the random generator for Html presented in Section 2, we can
observe that the last generation level (see gen 0) is constrained to generate
values only from the subset of terminal constructions. In order to model this
behavior, we will first define a data type Term to tag every terminal construction
explicitly:

data Term (f :: ∗ → ∗) r = Term (f r)

Then, if f is a terminal construction, the type Term f⊕ g can be interpreted
as representing data generated using values drawn both from f and g, but
closed using only values from f. Since this data type will not add any semantic
information to the represented values, we can define suitable Algebra and
BArbitrary1 instances for it simply by delegating the work to the inner type:

instance Algebra f a⇒ Algebra (Term f) a where
alg (Term f) = alg f

instance BArbitrary1 f⇒ BArbitrary1 (Term f) where
liftBGen bgen d = Term ⟨$⟩ liftBGen bgen d

Worth mentioning, our approach does not require the final user to manually
specify terminal constructions—a repetitive task that might lead to obscure
non-termination errors if a recursive construction is wrongly tagged as terminal.
In turn, this information can be easily extracted at derivation time and included
implicitly in our refined type-level idiom, described in detail in Section 5.

The next building block of our framework consists in a way of specifying
the generation frequency of each construction. For this purpose, we can follow
the same reasoning as before, defining a type-level operator ⊗ to explicitly tag
the generation frequency of a given representation:

data ((f :: ∗ → ∗)⊗ (n :: Nat)) r = Freq (f r)

This operator is parameterized by a type-level natural number n (of kind Nat)
representing the desired generation frequency. In this light, the type (f⊗3)⊕(g⊗
1) represents data generated using values from both f and g, where f is randomly
chosen three times more frequently than g. In practice, we defined ⊗ such that it
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associates more strongly than ⊕, thus avoiding the need for parenthesis in types
like the previous one. Analogously as Term, the operator ⊗ does not add any
semantic information to the values it represents, so we can define its Algebra

and BAbitrary1 instance by delegating the work to the inner type as before:

instance Algebra f a⇒ Algebra (f⊗ n) a where
alg (Freq f) = alg f

instance BArbitrary1 f⇒ BArbitrary1 (f⊗ n) where
liftBGen bgen d = Freq ⟨$⟩ liftBGen bgen d

With these two new type-level combinators, Term and ⊗, we are now able
to express the behavior of our entire generation process based solely on the
type we are generating.

In addition to these combinators, we will need to perform some type-level
computations based on them in order to define our random generator for
composite representations. Consider for instance the following type—expressed
using parenthesis for clarity:

(f⊗ 2)⊕ ((g⊗ 3)⊕ (Term h⊗ 5))

Our generation process will traverse this type one combinator at a time,
processing each occurrence of ⊕ independently. This means that, in order
to select the appropriate generation frequency for each operand we need to
calculate the overall sum of frequencies on each side of the ⊕. For this purpose,
we rely on Haskell’s type-level programming feature known as type families
[91]. In this light, we can implement a type-level function FreqOf to compute
the overall sum of frequencies of a given representation type:

type family FreqOf (f :: ∗ → ∗) :: Nat where
FreqOf (f⊕ g) = FreqOf f + FreqOf g

FreqOf (f⊗ n) = n ∗ FreqOf f

FreqOf (Term f) = FreqOf f

FreqOf = 1

This type-level function takes a representation type as an input and traverses it
recursively, adding up each frequency tag found in the process, and returning
a type-level natural number. Note how in the second equation we multiply the
frequency encoded in the ⊗ tag with the frequency of the type it is wrapping.
This way, the type ((f⊗2)⊕g)⊗3 is equivalent to (f⊗6)⊕(g⊗3), following the
natural intuition for the addition and multiplication operations over natural
numbers. Moreover, if a type does not have an explicit frequency, then its
generation frequency defaults to one.

Furthermore, the last step of our generation process, which only generates
terminal constructions, could be seen as considering the non-terminal ones as
having generation frequency zero. This way, we can introduce another type-
level computation to calculate the terminal generation frequency FreqOf′ of a
given representation:

type family FreqOf′ (f :: ∗ → ∗) :: Nat where
FreqOf′ (f⊕ g) = FreqOf′ f + FreqOf′ g
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FreqOf′ (f⊗ n) = n ∗ FreqOf′ f
FreqOf′ (Term f) = FreqOf f

FreqOf′ = 0

Similar to FreqOf, the type family above traverses its input type adding
the terminal frequency of each sub-type. However, FreqOf′ only considers
the frequency of those representation sub-types that are explicitly tagged as
terminal, returning zero in any other case.

Then, using the Term and ⊗ combinators introduced at the beginning of this
sub-section, along with the previous type-level computations over frequencies,
we can finally define our random generator for composite representations:

instance (BArbitrary1 f, BArbitrary1 g)
⇒ BArbitrary1 (f ⊕ g) where
liftBGen bgen d =
if d > 0

then frequency

[(freqVal @(FreqOf f), InL ⟨$⟩ liftBGen bgen d)
, (freqVal @(FreqOf g), InR ⟨$⟩ liftBGen bgen d)]

else frequency

[(freqVal @(FreqOf′ f), InL ⟨$⟩ liftBGen bgen d)
, (freqVal @(FreqOf′ g), InR ⟨$⟩ liftBGen bgen d)]

Like the generator for Html introduced in Section 2, this generator branches over
the current depth d. In the case we can still generate values from any construc-
tion (d > 0), we will use QuickCheck ’s frequency operation to randomly choose
between generating a value of each side of the⊕, i.e., either a value of f or a value
of g, following the generation frequencies specified for both of them, and wrap-
ping the values with the appropriate injection InL or InR on each case. Such fre-
quencies are obtained by reflecting the type-level natural values obtained from
applying FreqOf to both f and g, using a type-dependent function freqVal that
returns the number corresponding to the type-level natural value we apply to it:

freqVal :: ∀n . KnownNat n⇒ Int

Note that the type of freqVal is ambiguous, since it quantifies over every
possible known type-level natural value n. We use a visible type application
[92] (employing the @(...) syntax) to disambiguate to which natural value we
are actually referring to. Then, for instance, the value

freqVal @(FreqOf (f⊗ 5⊕ g⊗ 4))

evaluates to the concrete value 9 :: Int.
The else clause of our random generator works analogously, except that,

this time we only want to generate terminal constructions, hence we use the
FreqOf′ type family to compute the terminal generation frequency of each op-
erand. If any of FreqOf′ f or FreqOf′ g evaluates to zero, it means that such
operand does not contain any terminal constructions, and frequency will not
consider it when generating terminal values.
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Moreover, if it happens that both FreqOf′ f and FreqOf′ g compute to zero
simultaneously, then this will produce a runtime error triggered by the function
frequency, as it does not have anything with a positive frequency to generate.
These kinds of exceptions will arise, for example, if we forget to include at
least one terminal construction in our final representation—thus leaving the
door open for potential infinite generation loops. Fortunately, such runtime
exceptions can be caught at compile time. We can define a type constraint
Safe that ensures we are trying to generate values using a representation with
a strictly positive terminal generation frequency—thus containing at least a
single terminal construction:

type family Safe (f :: ∗ → ∗) :: Constraint where
Safe f = IsPositive (FreqOf′ f)

type family IsPositive (n :: Nat) :: Constraint where
IsPositive 0 = TypeError "No terminals"

IsPositive = ()

These type families compute the terminal generation frequency of a representa-
tion type f, returning either a type error, if its result is zero; or, alternatively,
an empty constraint () that is always trivially satisfied. Finally, we can use
this constraint to define a safe generation primitive genRep to obtain a con-
crete depth-bounded generator for every target type a, specified using a “safe”
representation f:

genRep :: ∀f a . (BArbitrary1 f, Safe f, Algebra f a)⇒ BGen a

genRep d = eval ⟨$⟩ barbitrary @(Fix f) d

Note how this primitive is also ambiguous in the type used for the representation.
This allows us to use a visible type application to obtain values from the
same target type but generated using different underlying representations. For
instance, we can obtain two different concrete generators of our Html type
simply by changing its generation representation type as follows:

genHtmlvalid :: BGen Html

genHtmlvalid = genRep @Htmlvalid

genHtmlsimplify :: BGen Html

genHtmlsimplify = genRep @Htmlsimplify

where Htmlvalid and Htmlsimplify are the representations types introduced in
Figure 1b—the syntax used to define them is completed in the next section.

So far we have seen how to represent and generate values for our target
data type by combining different random constructions, as well as a series of
type-level combinators to encode the desired generation behavior. The next
section refines our type-level machinery in order to provide a simple idiom for
defining composable random generators.
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5 Type-Level Generation Specifications

This section introduces refinements to our basic language for describing random
generators, making it more flexible and robust in order to fit real-world usage
scenarios.

The first problem we face is that of naming conventions. In practice, the
actual name used when deriving the representation for each random construction
needs to be generated such that it complies with Haskell’s syntax, and also
that it is unique within our namespace. This means that, type names like
Fun⟨+⟩ or Patsimplify#1 are, technically, not valid Haskell data type names,
thus they will have to be synthesized as something like Fun lt plus gt 543

and Pat simplify 1 325, where the last sequence of numbers is inserted by
Template Haskell to ensure uniqueness.

This naming convention results hard to use, especially if we consider that
we do not know the actual type names until they are synthesized during
compilation, due to their unique suffixes. Fortunately, it is easy to solve
this problem using some type-level machinery. Instead of imposing a naming
convention in our derivation tool, we define a set of open type families to hide
each kind of construction behind meaningful names:

type family Con (c :: Symbol)
type family Fun (f :: Symbol)
type family Pat (p :: Symbol) (n :: Nat)

where Symbol is the kind of type-level strings in Haskell. Then, our derivation
process will synthesize each representation using unique names, along with a
type instance of the corresponding type family, i.e., Con for data constructors,
Fun for interface functions, and Pat for functions’ patterns. For instance, along
with the constructions representations ConText, Fun⟨+⟩ and Patsimplify#1, we
will automatically derive the following type instances:

type instance Con "Text" = Term Con Text 123

type instance Fun "<+>" = Fun lt plus gt 543

type instance Pat "simplify" 1 = Term Pat simplify 1 325

As a result, the end user can simply refer to each particular construction
by using these synonyms, e.g., with representation types like Con "Text"

⊕ Fun "<+>". The additional Nat type parameter on Pat simply identifies each
pattern number uniquely.

Moreover, notice how we include the appropriate Term tags for each ter-
minal construction automatically—namely Con "Text" and Pat "simplify" 1

in the example above. Since this information is statically available, we can
easily extract it during derivation time. This relieves us of the burden of manu-
ally identifying and declaring the terminal constructions for every generation
specification. Additionally, it helps ensure the static termination guarantees
provided by our Safe constraint mechanism.

Using the type-level extension presented so far, we are now able to write
the generation specifications presented in Figure 1b in a clear and concise way.
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5.1 Parametric Target Data Types

So far we have seen how to specify random generators for our simple self-
contained Html data type. In practice, however, we are often required to write
random generators for parametric target data types as well. Consider, for
example, the following Tree data type definition encoding binary trees with
generic information of type a in the leaves:

data Tree a = Leaf a | Node (Tree a) (Tree a)

In order to represent its data constructors, we can follow the same recipe
presented in Section 3, but also parameterizing our representations over the
type variable a as well:

data ConLeaf a r = MkLeaf a

data ConNode a r = MkNode r r

The rest of the machinery can be derived in the same way as before, carrying
this type parameter and including the appropriate Arbitrary constraints all
along the way:

instance Algebra (ConLeaf a) (Tree a) where · · ·
instance Algebra (ConNode a) (Tree a) where · · ·
instance Arbitrary a⇒ BArbitrary1 (ConLeaf a) where · · ·
instance Arbitrary a⇒ BArbitrary1 (ConNode a) where · · ·

Then, instead of carrying this type parameter in our generation specifica-
tions, we can avoid it by hiding it behind an existential type:

data Some (f :: ∗ → ∗ → ∗) (r :: ∗) = ∀(a :: ∗) . Some (f a r)

The type constructor Some is a wrapper for a 2-parametric type that hides the
first type variable using an explicit existential quantifier. Note thus that the
type parameter a does not appear at the left-hand side of Some on its definition.
In this light, when deriving any Con, Fun or Pat type instance, we can use
this type wrapper to hide the additional type parameters of each construction
representation:

type instance Con "Leaf" = Term (Some ConLeaf)
type instance Con "Node" = Some ConNode

As a consequence, we can write generation specifications for our Tree data
type without having to refer to its type parameter anywhere. For instance:

type TreeSpec = Con "Leaf" ⊗ 2

⊕ Con "Node" ⊗ 3

Instead, we defer handling this type parameter until we actually use it to
define a concrete generator. For instance, we can write a concrete generator of
Tree Int as follows:
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genIntTree :: BGen (Tree Int)
genIntTree = genRep @(TreeSpec � Int)

Where� is a type family that simply traverses our generation specification, ap-
plying the Int type to each occurrence of Some, thus eliminating the existential
type:

type family (f :: ∗ → ∗) � (a :: ∗) :: ∗ → ∗ where
(Some f) � a = f a

(f⊕ g) � a = (f � a)⊕ (g � a)
(f⊗ n) � a = (f � a)⊗ n

(Term f) � a = Term (t � a)
f � a = f

As a result, in genIntTree, the�operator will reduce the type (TreeSpec�Int)
to the following concrete type:

(Term (ConLeaf Int) ⊗ 2) ⊕ ((ConNode Int) ⊗ 3)

Worth mentioning, this approach for handling parametric types can be extended
to multi-parametric data types with minor effort.

Along with our automated constructions derivation mechanism, the ma-
chinery introduced in this section allows us to specify random generators using
a simple type-level specification language.

The next section evaluates our approach in terms of performance using a
set of case studies extracted from real-world Haskell implementations, along
with an interesting runtime optimization.

6 Benchmarks and Optimizations

The random generation framework presented throughout this paper allows us
to write extensible generators in a very concise way. However, this express-
iveness comes attached to a perceptible runtime overhead, primarily inherited
from the use of Data Types à la Carte—a technique which is not often scru-
tinized for performance. In this section, we evaluate the implicit cost of com-
posing generators using three real-world case studies, along with a type-level
optimization that helps avoiding much of the runtime bureaucracy.

Balanced Representations As we have shown in Section 4, the random
generation process we propose in this paper can be seen as having two phases.
First, we generate random values from the representation types used to specify
the shape of our data; and then we use their algebras to translate them to the
corresponding values of our target data types. In particular, this last step is
expected to pattern match repeatedly against the InL and InR constructors of
the ⊕ operators when traversing each construction injection. Because of this,
in general, we expect a performance impact with respect to manually-written
concrete generators.
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As recently analyzed by Kiriyama et al., this slowdown is expected to be
linear in the depth of our representation type [93]. In this light, one can
drastically reduce the runtime overhead by associating each ⊕ operator in a
balanced fashion. So, for instance, instead of writing (f⊕ g⊕ h⊕ i), which
is implicitly parsed as (f⊕ (g⊕ (h⊕ i))); we can associate constructions as
((f ⊕ g) ⊕ (h ⊕ i)), thus reducing the depth of our representation from four
to three levels and, in general, from a O(n) to a O(log(n)) complexity in the
runtime overhead, where n is the number of constructions under consideration.

Worth mentioning, this balancing optimization cannot be applied to the
original fashion of Data Types à la Carte by Swierstra. This limitation comes
from that the linearity of the representation types is required in order to define
smart injections, allowing users to construct values of such types in an easy way,
injecting the appropriate sequences of InL and InR constructors automatically.
There, a näıve attempt to use smart injections in a balanced representation may
fail due to the nature of Haskell’s type checker, and in particular on the lack of
backtracking when solving type-class constraints. Fortunately, smart injections
are not required for our purposes, as users are not expected to construct values
by hand at any point—they are randomly constructed by our generators.

Benchmarks We analyzed the performance of generating random values
using three case studies: i) Red-Black Trees (RBT), inspired by Okasaki’s
formulation [94], ii) Lisp S-expressions (SExp), inspired by the package hs-
zuramaru15, and iii) HTML expressions (HTML), inspired by the html pack-
age, which follows the same structure as our motivating Html example. The
magnitude of each case study can be outlined as shown in Table 2.

These case studies provide a good combination of data constructors, in-
terface functions and patterns, and cover from smaller to larger numbers of
constructions.

Then, we benchmarked the execution time required to generate and fully
evaluate 10000 random values corresponding to each case study, comparing both
manually-written concrete generators, and those obtained using our modular
approach. For this purpose, we used the Criterion [95] benchmarking tool
for Haskell, and limited the maximum depth of the generated values to five
levels. Additionally, our modular generators were tested using both linear and
balanced generation specifications. Figure 3 illustrates the relative execution
time of each case study, normalized to their corresponding manually-written
counterpart—we encourage the reader to obtain a colored version of this work.

15http://hackage.haskell.org/package/zuramaru

Case Study #Con #Fun #Pat Total Constructions

RBT 2 5 6 13
SExp 6 - 9 15

HTML 4 132 - 136

Figure 2: Overview of the size of our case studies.

http://hackage.haskell.org/package/zuramaru
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Figure 3: Generation time comparison between manually written and automat-
ically derived composable generators.

As it can be observed, our approach suffers from a noticeable runtime over-
head when using linearly defined representations, especially when considering
the HTML case study, involving a large number of constructions in the genera-
tion process. However, we found that, by balancing our representation types,
the generation performance improves dramatically. At the light of these im-
provements, our tool includes an additional type-level computation that auto-
matically balances our representations in order to reduce the generation over-
head as much as possible.

On the other hand, it has been argued that the generation time is often
not substantial with respect to the rest of the testing process, especially when
testing complex properties over monadic code, as well as using random values
for penetration testing [71], [85].

All in all, we consider that these results are fairly encouraging, given that
the flexibility obtained from using our compositional approach does not produce
severe slowdowns when generating random values in practice.

7 Related Work

Extensible Data Types Swierstra proposed Data Types à la Carte [90], a
technique for building extensible data types, as a solution for the expression
problem coined by Wadler [96]. This technique has been successfully applied
in a variety of scenarios, from extensible compilers, to composable machine-
mechanized proofs [97]–[100]. In this work, we take ideas from this approach
and extend them to work in the scope of random data generation, where
other parameters come into play apart from just combining constructions, e.g.,
generation frequency and terminal constructions.

From the practical point of view, Kiriyama et al. propose an optimization
mechanism for Data Types à la Carte, where a concrete data type has to be
derived for each different composition of constructions defined by the user [93].
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This solution avoids much of the runtime overhead introduced when internally
pattern matching against sequences of InL and InR data constructors. However,
this approach is not entirely compositional, as we still need to rely on Template
Haskell to derive the machinery for each specialized instance of our data type.
In our particular setting, we found that our solution has a fairly acceptable
overhead, achieved by automatically balancing our representation types.

Domain Specific Languages Testing properties using small values first is a
good practice, both for performance and for obtaining small counterexamples.
In this light, SmallCheck [68] is a library for defining exhaustive generators
inspired by QuickCheck. Such generators can be used to test properties against
all possible values of a data type up to a given depth. The authors also present
Lazy SmallCheck, a variation of SmallCheck prepared to use partially defined
inputs to explore large parts of the search space at once.

Luck [72] is a domain-specific language for describing testing properties
and random generators in parallel. It allows obtaining random generators
producing highly-constrained random data by using a mixture of backtracking
and constraint solving while generating values. While this approach can lead
to quite good testing results, it still requires users to manually think about
how to generate their random data. Moreover, the generators obtained are not
compiled, but interpreted. In consequence, Luck ’s generators are rather slow,
typically around 20 times slower than compiled ones.

In contrast to these tools, this work lies on the automated side, where we
are able to provide lightweight invariants over our random data by following
the structural information extracted from the users’ codebase.

Automatic Derivation Tools In the past few years, there has been a bloom
of automated tools for helping the process of writing random generators.

MegaDeTH [70], [71] is a simple derivation tool that synthesizes generators
solely based on their types, paying no attention whatsoever to the generation
frequency of each data constructor. As a result, it has been shown that its
synthesized generators are biased towards generating very small values [85].

Feat [29] provides a mechanism to uniformly generating values from a given
data type of up to a given size. It works by enumerating all the possible values
of such type, so that sampling uniformly from it simply becomes sampling
uniformly from a finite prefix of natural numbers—something easy to do. This
tool has been shown to be useful for generating unbiased random values, as
they are drawn uniformly from their value space. However, sampling uniformly
may not be ideal in some scenarios, especially when our data types are too
general, e.g., using Feat to generate valid HTML values as in our previous
examples would be quite ineffective, as values drawn uniformly from the value
space of our Html data type represent, in most cases, invalid HTML values.

On the other hand, DRAGEN is a tool that synthesizes optimized generators,
tuning their generation frequencies using a simulation-based optimization
process, which is parameterized by the distribution of values desired by the
user [85]. This simulation is based on the theory of branching processes, which
models the growth and extinction of populations across successive generations.
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In this setting, populations consist of randomly generated data constructors,
where generations correspond to each level of the generated values. This tool
has been shown to improve code coverage over complex systems, when compared
to other automated generator derivation tools.

In a recent work, we extended this approach to generate random values
considering also the other sources of structural information covered here, namely
abstract interfaces and function pattern matchings [89]. There, we focus on
the generation model problem, extending the theory of branching processes
to obtain sound predictions about distributions of random values considering
these new kinds of constructions. Using this extension, we show that using
extra information when generating random values can be extremely valuable,
in particular under situations like the ones described in Section 2, where
the usual derivation approaches fail to synthesize useful generators due to a
lack of structural information. In turn, this paper tackles the representation
problem, exploring how a compositional generation process can be effectively
implemented and automated in Haskell using advanced type-level features.

In light of that none of the aforementioned automated derivation tools
are designed for composability, we consider that the ideas presented in this
paper could perhaps be applied to improve the state-of-the-art in automatic
derivation of random generators in the future.

8 Conclusions

We presented a novel approach for automatically deriving flexible, composable
random generators inspired by the seminal work on Data Types à la Carte. In
addition, we incorporate valuable structural information into our generation
process by considering not only data constructors, but also the structural
information statically available in abstract interfaces and functions’ pattern
matchings.

In the future, we aim to extend our mechanism for obtaining random
generators with the ability to perform stateful generation. In this light, a user
could indicate which random constructions interact with their environment,
obtaining random generators ensuring strong invariants like well-scopedness or
type-correctness, all this while keeping the derivation process as automatic as
possible.
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Abstract

Embedded Domain-Specific Languages (EDSLs) are an alternative to quickly im-
plement specialized languages without the need to write compilers or interpret-
ers from scratch. In this territory, Haskell is a prime choice as the host language.
EDSLs in Haskell, however, are often incapable of reifying useful static informa-
tion from the source code, namely variable binding names and source locations.
Not having access to variable names directly affects EDSLs designed to generate
low-level code, where the variables names in the generated code do not match
those found in the source code—thus broadening the semantic gap between
source and target code. Similarly, many existing EDSLs produce poor error mes-
sages due to the lack of knowledge of source locations where errors are generated.

In this work, we propose a simple technique for enhancing monadic EDSLs
expressed using do notation. This technique employs source-to-source plugins,
a relatively new feature of GHC, to annotate every do statement of our EDSLs
with relevant information extracted from the source code at compile time. We
show how these annotations can be incorporated into EDSL designs either
directly inside values or as monadic effects. We provide BinderAnn, a GHC
source plugin implementing our ideas, and evaluate it by enhancing existing
real-world EDSLs with relatively minor modification efforts to contemplate the
source-level static information related to variables names and source locations.
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1 Introduction

Embedded Domain-Specific Languages (EDSLs) are ubiquitous in Haskell. Its
powerful type system and extensible syntax are among the reasons making it a
very suitable programming language for implementing EDSLs [101]. Especially,
monads [102] and monadic do notation [103] are part of the programmers’
toolbox to implement all sorts of EDSLs. Monadic do notation enables users to
write domain-specific code in a sequential-like manner that is easy to adopt by
programmers not familiar to Haskell’s syntax or even functional programming
languages.

As a result of being embedded, Haskell EDSLs often lack the ability of
reflecting some of the static source information that is intrinsic and available to
the host language (Haskell) but not to the guest (the embedded DSL), namely
bound names and source locations. These limitations are especially known by
designers of EDSLs which generate low-level code, e.g., FeldSpar [104], Ivory
[105], or Copilot [106]. In these EDSLs, developers adopted, as the best-case
scenario, ad-hoc measures to enforce that variables names in the generated
code match those in the host language. In this paper, we instead propose a
systematic solution to such problems as a source-to-source plugin [107] called
BinderAnn. We will illustrate the aforementioned limitations of Haskell EDSLs
using a series of real-world examples of code generation, while we will show in
tandem how our approach can be used to overcome them.

1.1 Motivating Examples

We consider as a motivating example the monadic EDSL from the dotgen

package for generating DOT code16 from inside Haskell [108]. This EDSL
creates new graph nodes and connects them using do notation. A simple
example of this is shown in Fig. 1a, where we create a graph of the alternating
colors of a street semaphore.

Internally, this EDSL sequentially creates a fresh node name for each invoc-
ation of the node combinator, i.e, n0, n1, and so on. Then, the corresponding
DOT code is generated referring to these generated names, as it is shown in
Fig. 1b. Sadly, the generated code does not quite reflect the nature of our par-
ticular graph: sequential names are of little help for interpreting the semantics
of the generated code. To make things worse, this is not a just limitation of this
particular EDSL. The variable names to the left of binds (←) do not belong to
an EDSL itself, but to the host language in which it is embedded—thus, such
EDSL cannot make use of this useful source information directly.

1.1.1 Common Practices

To address this recurrent limitation, some EDSLs resolve in using redundant
strings to indicate variable names when synthesizing code [106], [109], [110].
For instance, consider the EDSL for synthesizing C programs via SMT solvers
in the sbv package [109]. This EDSL enables to express relationships between

16DOT is a graph description language used by many open source applications.
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semaphore = do
green ← node

yellow ← node

red ← node

green --> yellow

yellow --> red

red --> green

(a) EDSL code describing
a semaphore color cycle.

digraph G

{
n0; n1; n2;

n0 -> n1;

n1 -> n2;

n2 -> n0;

}

(b) Generated code without
source information.

digraph G

{
green; yellow; red;

green -> yellow;

yellow -> red;

red -> green;

}

(c) Generated code using the
BinderAnn plugin.

Figure 1: Enhancing the dotgen code generating EDSL with source information.

the inputs and outputs of a function, and based on that, it generates its C
body accordingly. Fig. 2a presents a very simple example of this, where we
use the cgInput combinator to bind the function inputs "x" and "y" to the
Haskell variables x and y, respectively, and then we specify how the outputs
are calculated based on them. In this example, the function will simply return
the sum of both inputs (line 5), while storing their difference in the output
pointer "diff" (line 4). Then, the EDSL will generate the following C code:

SInt32 AddSub(SInt32 x, SInt32 y, SInt32 *diff){
...

*diff = x - y;

return (x + y);

}

where ... simply indicates the rest of the generated code which is not relevant
to the point being made here. Notice how the EDSL expects the users to give
strings denoting variable names to the expressions they already bind with the
same variable name but using do notation. While this common technique works
in practice, this added redundancy requires maintenance and might be hard to
keep in sync with the concrete Haskell bind variable names they replicate.

1.2 BinderAnn

In this paper, we present a novel technique to enhance existing (and future)
EDSLs with the static information that is missing to generate faithful code, and
without relying on redundant string names. In essence, our approach consists
of automatically transforming the syntactic representation of our Haskell code
to make the static information related to bound names explicitly available to
EDSLs. This is now possible due to the recent addition of source-to-source
plugins [107] to the GHC Haskell compiler.

Recalling our dotgen example, our approach can be used to generate DOT
code that accurately reflects the one written by the user of the EDSL—see
Fig. 1c Furthermore, Fig 2b shows how our approach can simplify the sbv
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1 genAddSub = do
2 x← cgInput "x"

3 y← cgInput "y"

4 cgOutput "diff" (x− y)
5 cgReturn (x + y)

(a) EDSL code with redundant
string names for generating terms.

genAddSub = do
x← cgInput

y← cgInput

diff← cgOutput (x− y)
cgReturn (x + y)

(b) Simplified EDSL where names
are extracted automatically by
BinderAnn.

Figure 2: Avoiding redundant string names in the sbv EDSL via source
annotations.

EDSL by not requiring string names to be passed around while generating the
same C code.

1.3 Beyond Bindings

In practice, bound names are not the only kind of useful static information
that can be extracted from EDSL code. Many EDSLs lack descriptive error
messages which could be improved by having access to the source locations. To
illustrate this point, we consider the EDSL provided by the shellmate package
for executing shell scripts from Haskell [111]. With this EDSL, we can create
computations capturing the output of existing shell commands:

cpuinfo = capture (run "cat" ["/proc/cpuinfo"])
meminfo = capture (run "cat" ["/proc/meminfo"])

And use them to build complex shell-like scripts:

1 saveInfo = do
2 cpu← cpuinfo

3 mem← meminfo

4 output "info.txt" (cpu ++ mem)

Let us suppose that we mistype the "/proc/meminfo" path. If we run our
saveInfo script, the mangled path given to the command cat will produce a
runtime exception that will be captured by the EDSL and printed to the user
simply as:

Command "cat" failed with error code 1

This error message is hardly helpful for debugging the problem of our shell
script, especially considering that many functions may be defined in terms of
capturing the output of the cat command.

By using BinderAnn, it is also possible to extract the exact position in the
user code where the error is triggered. In this light, we can enhance this EDSL
to support more precise and useful error messages. For instance, the error
message above can be improved to:
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Exception raised at src/MyScript.hs:(3,3):

The value "mem" produced the following error:

Command "cat" failed with error code 1

Note how this error message now includes not only the name bound to the
problematic command (mem), but also its position in the code.

The examples presented so far have motivated the development of BinderAnn
to improve the capabilities of monadic EDSLs considerably. To summarize, the
contributions of this paper are:

• We propose a simple yet powerful syntactic transformation technique
for annotating monadic computations expressed using do notation with
useful source information (Section 2).

• We propose two different annotation styles depending on how EDSLs can
consume the static information provided to them, i.e., binding names and
source locations (Section 3).

• We extend our simple transformation technique with support for annotat-
ing monadic computations returning and pattern matching against tuples,
as well as a mechanism for controlling the transformation scope (Section
4).

• We provide an implementation of our ideas, in the shape of a GHC source-
to-source plugin called BinderAnn.17 With our plugin in mind from the
beginning, we develop a complete case study from scratch, demonstrating
how the ability to reify source information automatically might unlock
attractive new features in future EDSLs (Section 5).

• We discuss other possible approaches to fill the static information gap
between host and guest embedded languages and their implications.
Additionally, we reflect on the limitations of BinderAnn, as well as possible
extensions to make it applicable to a larger space of EDSL (Section 6).

2 Generating Source Annotations Using Source
Plugins

This section briefly describes source-to-source plugins (or source plugins for
short), a new mechanism included in the GHC compiler for inspecting and
transforming the parsed representation of the compiled code before any other
transformation is performed. Moreover, we show how it is possible to take
advantage of this mechanism to transparently enhance monadic code written
using do notation with useful source information.

Essentially, a GHC plugin is a Haskell function that can be inserted into
the compilation pipeline to transform the output of the compiled code in dif-
ferent ways [107], [112]. These transformations can alter the compiled code

17Available at https://github.com/OctopiChalmers/BinderAnn

https://github.com/OctopiChalmers/BinderAnn
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at different stages, where each stage defines a different interface for its corres-
ponding kind of plugin, dependent on the representation of the code used by
the compiler at that point. Historically, this mechanism only allowed plugins
to be inserted during type-checking, and after the code was transformed to
GHC’s Core intermediate representation [113]. Recently, GHC 8.6.1 also added
support for plugins to be inserted after parsing and after renaming, and this
work focuses on the former kind.

In GHC, the plugin interface is condensed in a record data type Plugin,
containing a field for each of the transformation stages available. In particular,
source-to-source plugins are given by the record field parsedResultAction of
this data type:

data Plugin = Plugin {
parsedResultAction :: [CommandLineOption]→ ModSummary

→ HsParsedModule→ Hsc HsParsedModule

· · ·
}

This field exposes the interface of a transformation function over the abstract
syntax tree of the module under compilation (of type HsParsedModule). This
abstract syntax tree includes relevant static information not available to the
programmer, such as the variable name of every binding, as well as the source
location of every syntactic object in the module—two valuable resources that
one might want to have access to when implementing EDSLs in Haskell.

Using this interface, we can implement our source plugin by providing a mod-
ule exporting a value plugin ::Plugin, which executes our code transformation:

module BinderAnn (plugin) where

import GhcPlugins

plugin :: Plugin
plugin = defaultPlugin {parsedResultAction = <our code here>}

Later, our plugin can be enabled by passing the name of its module as a
flag to the GHC compiler (-fplugin=BinderAnn), or using a compiler-options
pragma in the module we want our plugin to transform:

{-# OPTIONS GHC -fplugin BinderAnn #-}

The next subsection introduces a simple syntactic transformation procedure
based on source plugins for transposing useful static information from the
source code representation into the internal state of our EDSLs automatically.

2.1 Enhancing EDSLs with Source Information

We have seen that it is possible to expose static source information from
our code using source plugins. However, for our EDSLs to take advantage
of this information, we need to transform the user code so that it explicitly
communicates this information to the EDSL after our plugin runs at compile
time.
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In this work, we propose a simple transformation over do statements: we
will annotate each statement with the static information that can be extracted
from the parsed representation of the code, which we will simply refer to as a
source annotation. To achieve this, the first step consists of defining a concrete
representation for source annotations, which will be used both by our plugin
and by the target EDSLs it annotates. For this purpose, we will rely on a new
data type SrcInfo to hold the static information relative to a do statement:

data SrcInfo = Info (Maybe String) (Maybe Loc)

This data type stores the name bound to the statement (if any), and the
location in the source code where it is defined, being the latter a conjunction
of a file path, and a row and column within such file:

type Loc = (FilePath, Int, Int)

The option type used for the location information in the definition of SrcInfo is
required to represent the fact that the GHC compiler might not know the specific
source location of a statement. A situation that might occur, for instance, if
such a statement was automatically generated by another source plugin.

Later, our source plugin can easily populate a source annotation (of type
SrcInfo) for each do statement it finds. However, we still need to insert each
annotation into our EDSL in a predictable way. For this purpose, we will define
a function annotateM, taking a monadic computation and a source annotation,
and returning a new monadic computation which internalizes such annotation:

annotateM :: Monad m⇒ m a→ SrcInfo→ m a

Note how this function refers neither to a specific monadic type (m) nor to
a specific return type of the monadic computation (a). This generality lets
our plugin blindly transform every do statement it finds in the user code in a
type-safe manner. To do so, it simply wraps every statement with its static
information using our generic annotation function. For instance, our plugin will
transform the semaphore example from Section 1 to the following concrete code:

1 semaphore = do
2 green ← node `annotateM̀ Info (Just "green") (Just ("Main.hs", 2, 3))
3 yellow ← node `annotateM̀ Info (Just "yellow") (Just ("Main.hs", 3, 3))
4 red ← node `annotateM̀ Info (Just "red") (Just ("Main.hs", 4, 3))
5 green --> yellow`annotateM̀ Info Nothing (Just ("Main.hs", 5, 3))
6 yellow --> red `annotateM̀ Info Nothing (Just ("Main.hs", 6, 3))
7 red --> green `annotateM̀ Info Nothing (Just ("Main.hs", 7, 3))

Notice, for instance, how the bound name red is reflected in the source annota-
tion for the red ← node statement with the value Just "red", whereas the
green --> yellow statement in the next line is not given any name, which gets
represented by the Nothing constructor on its corresponding source annotation.

Additionally, each annotation carries the source location within the user
code of its corresponding statement—assuming here that the first do statement
is defined in line number 2 of the file Main.hs.
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After this transformation is automatically applied, the user will be able to
make use of this useful source information, which is now explicit in the source
code—and without the burden of maintaining manually written annotations.

Even though this transformation is rather mechanical, the behavior of the
annotating function annotateM is not trivial, and is subject to which types
of our EDSLs are expected to be annotated, and how the source annotations
should be consumed by them. The next section addresses the challenges of
implementing this function in depth.

3 Consuming Source Annotations

In the previous section, we demonstrated how it is possible to annotate expres-
sions written using do notation with source information via source plugins. Such
annotations rely on a generic function annotateM to produce the annotation ef-
fect. This section explores the details of this function in two possible variants.

Haskell gives the programmer the freedom to implement EDSLs in many
ways, depending on the nature of the embedded language. As a consequence, a
concrete solution for annotating EDSLs would likely not fit many use cases.
In this light, our approach supports two different annotation styles that the
programmer can use depending on the particular implementations of their
EDSLs:

• Effect-free annotations: the annotations are stored directly on the values
they refer to, e.g, using a specialized data constructor, or an option type.

• Effect-full annotations: the annotations are kept in a monadic context as
a side effect, e.g., using a mapping from values to annotations inside a
state monad.

On one hand, the effect-free style lets us annotate values in place, regardless of
the monadic context producing them, which might come in handy if our EDSL
defines several monadic types to be used by the end user. On the other hand,
the effect-full style lets us insert the source annotations in the monadic context
without having to modify the return value of each computation. This style
might be useful if our EDSL already carries an internal monadic state, or if
the source annotations should not be available to the end user.

Both annotation styles are independent of each other and provide different
interfaces to interact with BinderAnn. Programmers will then have to choose
the most suitable one depending on the nature of their EDSLs, and adapt their
code to be able to consume the annotations generated by our plugin.

The rest of this section addresses each annotation style in detail.

3.1 Effect-Free Annotations

The simplest way to annotate a value with source information is given when
its type already supports annotations. For instance, suppose that the graph-
building EDSL from Section 1 defines graph nodes as having an identifier, and
an associative list of attributes as payload:



8 ( V )

data Node = Node Id [(Attr, Value)]

With this in place, the rest of the EDSL combinators can be implemented in
terms of nodes as inputs and outputs:

node :: Dot Node

(-->) :: Node→ Node→ Dot ()

where Dot is the main monad defined by this EDSL, whose details are not
very relevant for this annotation style. To support generating faithful code, we
can extend the definition of the Node data type to also carry an optional field
representing the name of each node:

data Node = Node Id (Maybe String) [(Attr, Value)]

Then, we need to somehow specify that every monadic computation return-
ing a Node should (potentially) be annotated with its bound name. To encode
this, we can define a new type class [114] Annotated, representing types (of
type a) that can be annotated directly:

class Annotated a where
annotate :: a→ SrcInfo→ a

The function annotate simply takes a value and an annotation and returns an
annotated value of the same type. Then, we can specify how the source-bound
names can be inserted into nodes by giving an appropriate Annotated instance:

instance Annotated Node where
annotate (Node id attrs) (SrcInfo name loc) = Node id name attrs

where we simply extract the bind name from the source annotation and use it
as the node name—for simplicity, we discard the location information here.

Using this type class, we can finally implement our desired annotateM

function which transforms do statements by unwrapping the return value from
the monadic computation and returning the corresponding annotated one:

annotateM :: (Monad m, Annotated a)⇒ m a→ SrcInfo→ m a

annotateM ma ann = do
a← ma

return (annotate a ann)

This is an extensible mechanism that lets us support automatic annotations
over the return types of our interest. We simply need to provide an instance of
the Annotated type class for every return type of a do statement we want to
annotate using our plugin.

While simple, this transformation is not safe (yet). Recalling from Section
2, our plugin knows nothing about the return type of a do statement. Hence,
it transforms every statement it finds under the assumption that this trans-
formation will not produce a type error—as annotateM universally quantifies
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over any possible return type of the monadic computation it transforms. How-
ever, our annotateM function now carries an additional Annotated constraint!
In practice, this means that our plugin will break the well-typedness of our
EDSL if it happens to find a monadic computation returning a value of a type
without an Annotated instance. And even though we could potentially provide
an Annotated instance for every type used by our EDSL, a user could always
write a statement returning a value of a type not known by our EDSL:

x← return False

Here, the lack of an instance for Annotated Bool will break the module during
type checking.

To attenuate this problem, we can make every type trivially annotatable
by simply discarding the annotation altogether:

instance {-# INCOHERENT #-} Annotated a where
annotate a = a

This generic instance works as a default trivial annotation method, where any
concrete Annotated instance written by the programmer will take precedence
against this one [115]. Furthermore, note how this default instance requires to
be declared as incoherent. This ensures that the type checker will pick a concrete
instance written by the user whenever possible, but it will conservatively use the
default one in case of an overlapping arising from annotating fully-polymorphic
functions—we discuss this in detail in Section 6.4.

3.2 Effect-Full Annotations

EDSLs might also be implemented in a fully stateful manner, where the
important data is kept in the monadic context, and the user only gets a
reference to handle it. For instance, suppose that our graph-building EDSL
from Section 1 does not return nodes directly, but references to them instead:

data NodeRef = NodeRef Id

node :: Dot NodeRef

(-->) :: NodeRef→ NodeRef→ Dot ()

Here, the node payload will be kept in an internal state of the Dot monad
defined by the EDSL, which could be defined in terms of a state monad:

newtype Dot a = Dot (State DotState a)

data DotState = DotState {
node attrs :: Map NodeRef [(Attr, Value)]
}

In this case, we might as well want our annotation mechanism to follow the same
pattern, inserting the annotations in the monadic context instead of directly in
the value they refer to. For this purpose, we can extend our DotState type to
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also carry the source names given to the bound nodes (if any) using a partial
mapping:

data DotState = DotState {
node attrs :: Map NodeRef [(Attr, Value)],
node names :: Map NodeRef String

}

Similarly as before, we can define a new type class to specify how to annotate
values of different types, except that this time we also need to quantify over
the specific monadic context in which the annotation takes place:

class Monad m⇒ AnnotatedM m a where
annotateM :: m a→ SrcInfo→ m a

Notice that this new type class defines our desired annotateM function directly.
In contrast to the previously seen Annotated type class from the previous
subsection, this type class lets us specify how do statements can be annotated
depending not only on their result type but also on their specific monadic type.
In this light, computations returning new node references can be annotated
within the Dot monad by inserting the bound names in the extended internal
state:

instance AnnotatedM Dot NodeRef where
annotateM mref (Info name loc) = do
ref← mref

when (isJust name) $ modify $λs→
s {node names = Map.insert ref (fromJust name) (node names s)}

return ref

As before, we also need to provide a default instance for our new type class, to
ensure that our plugin will not break the well-typedness of the user code:

instance {-# INCOHERENT #-} Monad m⇒ AnnotatedM m a where
annotateM ma = ma

All in all, the two annotation styles presented in this section cover a wide
variety of EDSL implementation patterns.

4 Extensions

This section describes two useful extensions to our annotation approach that
are currently supported by our plugin.

4.1 Annotating Computations Returning Tuples

The syntactic transformation described so far contemplates monadic compu-
tations with and without bound names. However, in principle we could only
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use it to extract the names bound to complete resulting values, i.e, when the
pattern at the left-hand side of (←) is a plain variable pattern. In practice, a
computation could produce multiple values and return them in a tuple. For in-
stance, suppose that our graph-building EDSL example from Section 1 provides
a combinator nodes returning multiple new nodes at once:

(green, yellow, red)← nodes

For this common programming practice, we would want to insert an annotation
for each element of this tuple, following the same pattern as we did before.
However, our source annotations can only associate a single name bound to a
complete result value of a monadic computation.

Fortunately, we can extend our plugin to support tuple results by inserting
a function that lifts our annotation mechanism to each element of the resulting
tuple:

(green, yellow, red)← nodes

`annotateM3̀
(Info (Just "green") (Just ("Main.hs", 2, 4)),
Info (Just "yellow") (Just ("Main.hs", 2, 10)),
Info (Just "red") (Just ("Main.hs", 2, 18))

where annotateM3 simply extracts each tuple element from the monadic com-
putation, annotates it using the ordinary annotation function, and returns a
new tuple containing each annotated value:

annotateM3 :: Monad m⇒ m (a, b, c)→ (SrcInfo, SrcInfo, SrcInfo)→ m (a, b, c)
annotateM3 mabc (ia, ib, ic) = do

(a, b, c)← mabc

a′ ← return a`annotateM̀ ia

b′ ← return b`annotateM̀ ib

c′ ← return c`annotateM̀ ic

return (a′, b′, c′)

It is easy to see how this lifting primitive can be trivially generalized to tuples
of any fixed size.

4.2 Specifying the Annotation Scope

By default, our annotation plugin will transform every do expression present
on the module it runs over. Even though a module can contain do expressions
of different monadic types, we have shown in Section 3 how this transformation
can effectively affect only those expressions of the types the user is interested in.

Nonetheless, for a given type to be annotated with source information, a
user might still want to limit the scope of the annotations to a certain subset of
do expressions. To support this, our plugin can also be set to work in a selective
mode, where the user specifies which do expressions should be transformed.

On one hand, if the target expression is bound to a top-level name, we can
use a GHC annotation pragma to specify that we are interested in annotating it:
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{-# ANN semaphore SrcInfo #-}
semaphore = do
<annotated do statements>

This way, BinderAnn will begin by reifying all the annotation pragmas defined
in the module, and will proceed to transform only those do expression for
which a corresponding annotation pragma exists.

However, annotation pragmas can only refer to top-level bindings, limiting
the applicability of this technique. In practice, writing do expressions at the
right hand side of the ($) infix function application operator is quite common.
For instance, a user might define a graph and render its DOT code right away:

semaphoreCode = showDot $do
<do statements>

There is no top-level name we can use to specify our plugin to annotate this
nested do expression. To solve this, we can introduce an infix annotation
operator. This is, we can replace the infix function application operator ($)
with a new syntactic operator, e.g., (|$|), that can be sought within the user’s
code in order to transform nested do expressions:

semaphoreCode = showDot |$| do
<annotated do statements>

Then, our plugin will transform every do expression at the right hand side of a
(|$|) operator to include the appropriate source annotations, replacing it with
a normal function application in the process. In practice, the programmer can
specify the annotation operator to be any valid infix operator name using a
plugin option in BinderAnn (-fplugin-opt BinderAnn:infix=|$|).

This gives us the freedom to choose the most appropriate operator according
to the nature of the embedded language. Additionally, the infix annotation
operator can be defined as a synonym to the actual function application
operator:

(|$|) :: (a→ b)→ a→ b

(|$|) = ($)

This way, the behavior of our code does not change when the plugin is disabled.
The next section develops a complete case study, exploring some interesting

features that our plugin enables and can aid in implementing future EDSLs.

5 Case Study: Theorem Proving EDSL

So far we have seen how source annotations can be automatically extracted from
the source code using a GHC source plugin (Section 2), as well as consumed by
our EDSLs in different ways depending on how they are implemented (Section
3).
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Using this approach, we enhanced several existing EDSLs [108], [109], [111],
[116] (including the ones presented in Section 1) to support source annotations,
obtaining attractive results18with relatively small effort.

To demonstrate the full potential of our automated transformation technique,
this section introduces a novel case study we designed from scratch having
source annotations in mind. In this light, we implemented a simple proof
assistant EDSL for propositional logic formulas,19 based on Coq’s [117] tactic
style, i.e., our proofs will consist of a series of monadic commands (the tactics)
which will manipulate our goals and hypotheses to construct a proof for a given
target formula.

Despite not being academically enlightening, this EDSL uses the effect-full
annotation style to take advantage of the source information present in the user
code, in order to provide useful interactive (modulo recompilation time) proof-
state reports—an attractive feature that was not possible to achieve before using
monadic EDSLs. To give an example of this, Fig. 3a shows a proof of Modus
ponens discharged using our EDSL. Firstly, we use the combinator variables
to create two new propositional variables p and q (line 3). These variables are
used immediately in line 4, where the proof combinator establishes the current
proof goal (p ∧ (p ⇒ q) ⇒ q) and we can proceed to prove it using the do
expression starting after the ($) operator.

The proof itself uses a series of tactic combinators to progressively manipu-
late our goal and hypotheses in order to prove our goal. In the first place, we
introduce the left-hand side of the top-level implication goal as a new hypo-
thesis named hand using the intro combinator (line 5), leaving us with the re-
sponsibility of proving its consequence, i.e., q. From here, we use the destruct

combinator to split our conjunction hypothesis hand into two new hypotheses
named hp and hpq, representing each side of the conjunction (line 6). Having
the hypotheses p and p ⇒ q now in scope, we use the apply tactic to elim-
inate the latter applying it the former, obtaining a new hypothesis hq which
represents our goal (line 7). Our proof concludes in line 8 by telling the EDSL
to use the specific hypothesis hq as a proof of our goal, using the exact com-

18Available at http://github.com/OctopiChalmers/BinderAnn-examples
19Available at http://github.com/OctopiChalmers/PropProver

1 modus ponens :: Proof Prop

2 modus ponens = do
3 (p, q)← variables

4 proof (p ∧ (p ⇒ q) ⇒ q) $ do
5 hand← intro

6 (hp, hpq)← destruct hand

7 hq← apply hp hpq

8 exact hq

9 qed

(a) A proof of Modus Ponens using
do notation in our EDSL.

At Proofs.hs:(7,5):

1 subgoal left

p, q: Prop

hand: p ∧ (p ⇒ q)

hp: p

hpq: p ⇒ q

hq: q

===================

q

(b) Proof state using
source annotations.

Incomplete proof:

1 subgoal left

V0, V1: Prop

H0: V0 ∧ (V0 ⇒ V1)

H1: V0

H2: V0 ⇒ V1

H3: V1

===================

V1

(c) Proof state using
internal names.

Figure 3: User interface of our Coq-like, tactics-based proof assistant EDSL.

http://github.com/OctopiChalmers/BinderAnn-examples
http://github.com/OctopiChalmers/PropProver
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binator. The final qed command at line 9 simply asserts that the proof given
matches the current goal, and returns the proven proposition.

While writing this proof, our EDSL assists the user with a report of the
current proof state on each step. For instance, by removing the last tactic we
apply (line 8), the corresponding proof state given to the user is the one shown
in Fig. 3b. Notice how this report reflects the same variable and hypothesis
names introduced by the user in the proof code, i.e., p, q, hand, and so on.
Additionally, it indicates the current proof position within our file, which is
also used to emit a precise error message whenever some tactic is applied
incorrectly—all these features are now possible thanks to our plugin.

To illustrate how helpful this information is for our EDSL, Fig. 3c illus-
trates the same proof state report we would obtain without reified source an-
notations (by disabling our plugin for instance). There, both variable and hy-
pothesis names are just printed out using their internal names. Moreover, the
current proof-state source position is not available either. Together, these two
compromises limit the attractiveness of implementing elegant embedded proof
assistants in Haskell.

5.0.1 Implementation

To implement our EDSL, we will start by defining our main monadic data type
Proof by stacking two monads: a StateT transformer to keep an implicit proof
state, on top of an Except monad to raise and catch proof-related errors:

newtype Proof a = Proof (StateT ProofState (Except ProofError a))

The most interesting bit here is how we define our proof state. In essence, we
will keep a set of propositional variables in scope, along with a stack of subgoals
(propositional formulas to construct) and their corresponding context:

data ProofState = ProofState {
ps vars :: Set Var,
ps subgoals :: [(Prop, Context)]
}

Here, variables are represented simply as numbers, whereas contexts are map-
pings from hypotheses (also represented as numbers) to propositions:

newtype Var = Var Int

newtype Hyp = Hyp Int

type Context = Map Hyp Prop

Finally, propositions are represented using a simple recursive data type encoding
each logical connective:

data Prop = Var Var | Prop ∧ Prop | Prop ⇒ Prop | · · ·

The machinery introduced so far is enough to implement the core logic
of our EDSL and its proof tactics. However, to take advantage of the source
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information extracted by our plugin using the effect-full annotation style, we
will further extend our proof state with three additional fields to keep track of
the source information relevant to our proofs:

data ProofState = ProofState {
· · ·
ps var names :: Map Var String,
ps hyp names :: Map Hyp String,
ps curr pos :: Maybe Loc

}

These new fields will help us keep track of: the source name given to each
propositional variable (introduced by the variables combinator); the source
name given to each new hypothesis (introduced by our different tactics); and the
location in the source code of the last command evaluated by the EDSL (if any).

Then, to connect this internal state to the source annotations generated by
our plugin, we need to consider the different result types that each combinator
of our EDSL produces. In the first place, our variables combinator is used
to instantiate new propositional variables (of type Var). In this light, we can
create an annotation rule (using an AnnotatedM instance) to store the source
name each variable is given by the user (if any) into the internal names mapping
of our proof state:

1 instance AnnotatedM Proof Var where
2 annotateM mvar (Info name loc) = do
3 updateCurrentPosition loc

4 var← mvar

5 when (isJust name) (recordVarName var (fromJust name))
6 return var

where recordVarName (line 5) inserts the bind name (if any) coming from the
source annotation into the internal variable names mapping:

recordVarName :: Var→ String→ Proof ()
recordVarName var name = modify $λs→
s {ps var names = Map.insert var name (ps var names s)}

Additionally, the function updateCurrentPosition (line 3) simply updates
the location in the code of the last command executed by the EDSL (if any):

updateCurrentPosition :: Maybe Loc→ Proof ()
updateCurrentPosition loc = modify $λs→ s {ps curr pos = loc}

The next thing we need to consider is how the result of each tactic affects
the source information collected in the internal proof state. In principle, proof
tactics can return either a new hypothesis (or a tuple of them), when they
cause new hypotheses to appear in the proof state, e.g., intro or apply tactics;
or a unit value, when they transform the proof state without introducing any
new hypothesis, e.g., the exact tactic. With this in mind, we will provide two
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additional annotation rules to be executed whenever a proof tactic returns
either a new hypothesis (of type Hyp) or nothing (of type ()):

1 instance AnnotatedM Proof Hyp where
2 annotateM mhyp (Info name loc) = do
3 updateCurrentPosition loc

4 hyp← mhyp

5 when (isJust name) (recordHypName hyp (fromJust name))
6 return hyp

7 instance AnnotatedM Proof () where
8 annotateM munit (Info name loc) = do
9 updateCurrentPosition loc

10 munit

The first AnnotatedM instance (line 1) will store the source name each hypo-
thesis is given by the user (if any) into the internal proof state—the function
recordHypName from line 5 works analogously as recordVarName. As before, we
keep track of the last command evaluated by the EDSL in case of a proof error.

For the case of the second AnnotatedM instance (line 7), tactics not produ-
cing new hypotheses will not bring new source names to store in the internal
proof state. However, this instance makes sure that if such a tactic fails, we
have its position logged into our internal proof state in order to report a pre-
cise error message (line 9).

With these AnnotatedM instances in place, our plugin will seamlessly interact
with them, keeping track automatically of source names introduced by the
users in their code, as well as the location of each tactic invocation in case of
having to report a proof-related error.

6 Discussion

We have presented a simple mechanism based on source plugins for enhan-
cing Haskell EDSLs with source information. This section reflects on other
approaches for supporting the extraction of source information without relying
on source plugins. Moreover, we discuss limitations and possible extensions to
our approach.

6.1 Preprocessing Haskell Code

Our approach is based on transforming the user code adding explicitly some of
the useful information that gets lost during compilation. The main advantage
of source plugins is that they provide a simple way of doing so without relying
on external machinery. Before their existence, achieving the same kind of
functionality would have required a substantial amount of effort.

For an overview of other possible (and arguably less pleasant) solutions
to this problem, we refer the reader to the work of Dévai et al. [118]. There,
the authors propose different indirect techniques for enhancing Haskell EDSLs
with static information, e.g., using cpphs, the Haskell implementation of the C
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preprocessor; as well as transforming the Haskell source AST using existing
parsers and pretty printers before feeding it to the actual compiler.

6.2 Implementing EDSLs Using QuasiQuotation

In contrast to preprocessing our Haskell code to include static information, it
is also somewhat possible to achieve the same goal using meta-programming.

Template Haskell [30] is the Haskell meta-programming framework bundled
in the GHC compiler. This tool can be used to inspect the typing informa-
tion present in the user’s codebase and synthesize new code depending on it
but, for technical reasons, inspecting term definitions or modifying existing
Haskell code is not possible, making this framework unsuitable for implement-
ing a transformation-based approach. Nonetheless, a useful feature of Tem-
plate Haskell used by many existing EDSLs [105], [119]–[122] is the support for
quasiquotation [123]. Essentially, quasiquotation allows to embed code writ-
ten using arbitrary, domain-specific syntax into our Haskell code. To do so,
this approach relies on implementing quasi quoters, i.e., interpretations from
arbitrary strings to their corresponding Haskell expressions:

data QuasiQuoter = QuasiQuoter {
quoteExp :: String→ Q Exp,
· · ·

}

where Q is the quasiquotation monad defined by Template Haskell.
Using this approach, it would be possible to implement our Coq-like EDSL

from Section 5 as a quasi quoter coq :: QuasiQuoter accepting concrete Coq
syntax. Then, we could use it to embed Coq proofs into our Haskell EDSL
using quasiquotation brackets syntax ([| · · · |]):

1 modus ponens :: Proof Prop

2 modus ponens = [coq|

3 Variables P Q.

4 Theorem (P ∧ (P → Q) → Q).

5 Proof.

6 intro hand.

7 destruct hand as [hp hpq].

8 apply hp hpq as hq.

9 exact hq.

10 Qed.

11 |]

An advantage of this approach is that the arbitrary code written inside of
the quasiquotation brackets has (almost) no syntactic restrictions. Hence, it can
be used to embed domain-specific code written using the syntax that fits best
the nature of a given EDSL, as opposed to the syntactic restrictions imposed by
the use of Haskell syntax and do notation—which are exploited by BinderAnn.

However, all this flexibility does not come for free. Implementing a
quasiquoter for a language with a novel syntax implies writing a lexer and a
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parser from a plain string to a Haskell expression—a task that might over-
come the benefits of having a new specialized syntax. Moreover, the interac-
tion between quasiquoters and native Haskell code tends to be intricate. In
particular, enabling quasiquoters to support embedding native Haskell code
inside quasiquotation brackets (something known as antiquotation) requires a
considerable amount of work and knowledge [123]—without this feature, our
quasiquoters can only accept constant EDSL expressions inside the quasiquota-
tion brackets.

Extracting bound names becomes possible using quasi quoters, since, as
we mention above, we have access to the literal string written by the user.
Source locations, on the other hand, are more tricky to infer. By default,
quasiquoters will only be able to recognize source locations relative to where
the quasiquotation brackets are interpolated in our Haskell code (line 2 in our
example above), difficulting the task of giving the end-user error messages
referring to absolute locations within their code.

6.3 Source Annotations for Non-Monadic EDSLs

In this work, we decided to focus only on automatically annotating monadic
EDSLs expressed using do notation. Although it may seem arbitrary, the reason
behind this decision is simple: do notation gives us a good level of granularity.
Our plugin performs statement-wise transformations, matching the natural
notion of having one domain-specific command or instruction per do statement.
This symmetry lets us annotate EDSL very transparently for the end-user.

On the other hand, there exist many remarkable non-monadic EDSLs written
in Haskell and not supporting them by default constitutes a noticeable limitation
of our current approach. In principle, we could use the pure annotation style
introduced in Section 3 to insert annotations into pure values. However, it
is the lack of a well-defined statement structure what complicates deciding
where to insert source annotations. On one hand, annotating only top-level
bindings might be too sporadic for practical purposes, while doing so for
every subexpression within a value might blow up the size of our transformed
code exponentially, so an acceptable annotation granularity would seem to lay
somewhere in between of these two extremes—an intriguing problem to drive
our future work.

6.4 Use of Incoherent Instances

As mentioned in Section 3, our approach let us inject source annotations into
the values of certain types of interest, and relies on default instances to provide
trivial implementations of the annotation functions for any other possible value.

Instead of having to provide concrete annotation instances for each possible
type present in the user code, these default instances are a convenient feature
that allows doing so on a per-case basis while preserving the type-correctness
of the user code after it is transformed by our plugin. Sadly, this convenience
has as a limitation that annotations inserted into fully-polymorphic functions
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will be systematically discarded. To illustrate this, consider for example the
following function that duplicates the output of a monadic computation:

twice :: Monad m⇒ m a→ m (a, a)
twice ma = do
x← ma

return (x, x)

If written by the user of the EDSL, and then annotated by our plugin, this
function will trigger a type error when there exists at least a single more concrete
Annotated or AnnotatedM instance. The reason behind this is simple: while
type-checking the annotated statement x ← ma, only the default annotation
instance is polymorphic enough to match the type of ma, however, it cannot
be chosen directly, as the existence of other more concrete ones would make
this choice inconsistent, e.g, using the default instance even when twice is
instantiated in the user code with a type that has a more concrete one. Then,
declaring our default instances as incoherent loosens this constraint, allowing
the compiler to choose the default instance whenever it has to solve an overlap
while compiling fully-polymorphic functions like twice, but leaving us with
the aforementioned limitation as a result of this conservative behavior.

The complexity around the use of overlapping instances is well-known by
the Haskell community. In this light, this problem has been solved using
more sophisticated approaches relying on type-level programming, e.g., using
closed type families [124]. Adopting them in our plugin without sacrificing its
transparency and ease of use is an ambitious problem that we keep as future
work.

7 Conclusions

We developed a simple mechanism to facilitate the automatic extraction of
useful source code information that is otherwise lost during compilation. Having
access to such information when implementing embedded domain-specific
languages is extremely valuable, making it possible to implement attractive
features such as faithful code generation and precise error messages. In the
past, such features were more complicated if not impossible to achieve without
involving undesirable trade-offs like repeated code or quasiquotations.

In the future, we aim to investigate how to extend our approach to a wider
set of EDSL programming patterns, especially to those implemented using non-
monadic combinators, and for which the use of do notation is not available.
Additionally, we intend to evaluate how our annotation framework could be
extended using generic programming techniques, so programmers should not
need to adapt their existing EDSL data type definitions to work with it.
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Abstract

Types indexed with extra type-level information are a powerful tool for stat-
ically enforcing domain-specific security properties. In many cases, this ex-
tra information is runtime-irrelevant, and so it can be completely erased at
compile-time without degrading the performance of the compiled code. In prac-
tice, however, the added bureaucracy often disrupts the development process,
as programmers must completely adhere to new complex constraints in order
to even compile their code.

In this work we present WRIT, a plugin for the GHC Haskell compiler
that relaxes the type-checking process in the presence of runtime-irrelevant
constraints. In particular, WRIT can automatically coerce between runtime
equivalent types, allowing users to run programs even in the presence of some
classes of type errors. This allows us to gradually secure our code while still
being able to compile at each step, separating security concerns from functional
correctness.

Moreover, we present a novel way to specify which types should be considered
equivalent for the purpose of allowing the program to run, how ambiguity at
the type level should be resolved and which constraints can be safely ignored
and turned into warnings.
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1 Programming with Type Constraints

Enforcing domain-specific properties is a complicated task that developers are
forced to carefully address when designing complex systems. In the functional
programming realm, strongly-typed languages like Haskell are an advantage
since one can use the type system to enforce domain-specific constraints! How-
ever, this technique is not without flaws. To illustrate some of the issues with
this technique, suppose we are writing a library for information-flow control
over labeled pure values – loosely inspired by the MAC library by Russo [125].
For simplicity, we assume that the only labels are L for public and H for secret
data. Then, we can use phantom types [126], [127] to label arbitrary data with
security labels:

data Label = L | H

newtype Labeled (l :: Label) a = Labeled a

As an example, the value Labeled 42 :: Labeled L Int represents a public
integer, whereas Labeled "1234" ::Labeled H String represents a secret string.
It is important to note that in Haskell, newtypes are representationally equal
to the type they wrap, meaning that the runtime representation of Labeled 42

is the same as the one for 42. Later, labeled values can be combined according
to different security policies using type constraints [114], [115], as an example,
we can enforce that no information flows from H to L by defining the empty
type class:

class ((l :: Label) ⩽ (l′ :: Label))

and defining instances of (⩽) only for the flows we allow:

instance (L ⩽ L)
instance (L ⩽ H)
instance (H ⩽ H)

Since there is no instance for the forbidden flow H ⩽ L, any code that triggers
the constraint H ⩽ L during compilation will produce a type error. Note that the
class (⩽) has no methods, so it is represented by a computationally-irrelevant
empty dictionary at runtime.

We can now use (⩽) to implement combinators over labeled values that
ensure that secrets do not leak into public data, e.g. the familiar zip combinator
can be given the type:

zip :: (x ⩽ z, y ⩽ z)⇒ Labeled x [a ]
→ Labeled y [b ]
→ Labeled z [(a, b)]

where (x ⩽ z, y ⩽ z) ensures that the label z of the output is greater or equal
to both its inputs. Then, the definition:
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bad :: Labeled L [(Usr, Pwd)]
bad = zip (Labeled [11111, 222222] :: Labeled L [Usr])

(Labeled ["hun", "ter2"] :: Labeled H [Pwd])

will be rejected by GHC with a generic error indicating that we are missing a
type class instance for the forbidden flow:

error: No instance for H <= L (...)

and indeed, we can see that there is a leak from the secret passwords in the list
["hun", "ter2" ] to the public list [(11111, "hun"), (222222, "ter2")]. Ouch!

As shown so far, we can use Haskell’s type system to accommodate domain-
specific constraints about security labels using phantom types and type classes.
Although this is a powerful strategy when it comes to writing domain-specific
libraries [121], [128]–[130], it can be hard to use in practice:

• The code cannot be run unless it is provably secure, preventing users
from testing the functional correctness of the program separately from
its security properties.

• Users must tag all their data with an explicit Label, and cannot use
features such as pattern matching without explicitly unwrapping and
rewrapping the labels.

• Moreover, they need to tag both the secret and the public data, even
though there might exist a sane default tag.

• The type errors are too general and hard to understand for users unfamiliar
with Haskell’s type system, and;

• Synthesizing type based suggestions [131] becomes harder, due to domain-
specific constraints and ambiguous types.

2 Weakening Runtime-Irrelevant Typing

In GHC, type checking is based on constraint-based type inference. Albeit
intricate in practice, the algorithm works by traversing the code to accumulate
a set of type constraints (defined as part of the type system specification) and
then invokes the constraint solver to solve those constraints [132]. In the latest
GHC, constraints come in three main flavours [133]:

• Givens from type signatures, for which we have evidence,

• Wanteds from expressions, for which we want evidence,

• Deriveds, which are constraints that any solution must satisfy but we do
not require evidence of (e.g. equalities arising from functional dependencies
and superclasses).
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The constraint solver solves the wanteds with respect to the givens and the
typing rules of GHC (which include creating and unifying type variables),
making sure that the solution satisfies the deriveds [132], [133]. This process is
capable of type-checking complex programs, but is not perfect when it comes
to domain-specific constraints like (⩽).

Luckily, the type checker can be extended with plugins to handle additional
type-checking rules, for example, to simplify naturals or invoking an SMT
solver [134], [135]. Type checker plugins are invoked by the compiler in order to

1. simplify givens, where a plugin might find a contradiction, and,

2. whenever there are unsolved constraints that the type checker could not
solve.

For the purpose of weakening the type checking of runtime-irrelevant types,
we developed WRIT,20a plugin that extends GHC’s type system by adding the
rules seen in Figure 1 for when type checking would not be able to proceed other-
wise. Users of the plugin can selectively apply these rules to runtime-irrelevant
constraints and equalities by writing instances of the Ignore, Discharge,
Promote, and Default type families [136], [137] as described in the rest of this
section.

2.1 Ignoring Runtime-Irrelevant Constraints

In Haskell, users can define empty typeclasses that have no methods (like (⩽)),
which represent runtime-irrelevant constraints. However, we would like to be
able to turn these constraints into compile-time warnings, so that functional
correctness of the program can be verified separately from its security. The
Ignore rule applies whenever there is an unsolved empty typeclass constraint
with an instance of the Ignore family:

type family Ignore (c :: Constraint) :: Message

By defining an instance of the Ignore family for (⩽):

type instance Ignore (H ⩽ L) =
Msg (Text "Found forbidden flow from H to L!")

Users can specify that the constraint H ⩽ L can be ignored with the message
shown above. With this instance in scope and WRIT enabled, the error for
the bad function defined earlier will be turned into the following warning:

warning: Found forbidden flow from H to L!

20The WRIT plugin is available at https://github.com/tritlo/writ-plugin.

https://github.com/tritlo/writ-plugin
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2.2 Discharging Runtime-Irrelevant Equalities

With runtime-irrelevant types, we often want to ignore nominal equalities of
the form a ∼ b, which are specially handled GHC primitives. As an example,
we might want to turn L ∼ H into a warning when compiling insecure programs.
The Discharge rule applies to unsolved equalities of the form a ∼ b, for which
there is an instance of the Discharge family for a and b:

type family Discharge (a :: k) (b :: k) :: Message

By defining an instance of Discharge for L and H:

type instance Discharge L H =
Msg (Text "Using a public L as a secret H!")

Users can allow L ∼ H with the message shown above. This in conjunction with
ignoring H ⩽ L effectively negates any guarantees that our library provides.

2.3 Promoting Representationally-Equivalent Types

A special case of discharging is when a and b have the kind (∗), the kind of
base types in Haskell. Discharging the equality a ∼ b effectively promotes a

to b, meaning that a is treated as a b. This is only runtime-irrelevant when a

and b have the same runtime representation, making a ∼ b runtime-irrelevant.
This coincides with the Coercible constraint in GHC [138], so to handle this
common case we define Promote:

type family Promote (a :: ∗) (b :: ∗) :: Message

And define an instance of Discharge for types of kind (∗):

type instance Discharge (a :: ∗) (b :: ∗) =
OnlyIf (Coercible a b) (Promote a b)

Then, by defining an instance of Promote for labeled values:

type instance Promote a (Labeled l a) =
Msg (Text "Promoting unlabeled " :<>: ShowType a

:<>: Text " to " :<>: ShowType (Labeled l a))

Users can use any base type a (like Int) as a Labeled l a, where l is either L
or H, e.g., it becomes possible to write: [1, 2 ] :: Labeled L [Int ], where [1, 2 ] is
promoted and treated as a public [Int].

2.4 Defaulting Runtime-Irrelevant Type Variables

When programming using runtime-irrelevant types, it frequently occurs that
the type of a phantom type variable cannot be inferred. However, it is often
the case that there is a “sane” value to choose when there are no restrictions,
such as the label L for labeled data. The Default rule applies whenever there
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is an unsolved constraint with a free type variable of kind k for which there is
an instance of the Default family:

type family Default k :: k

By defining an instance of the Default family for Label:

type instance Default Label = L

Users can specify that any free type variables of kind Label in an unsolved
constraint should be set to L.

Γ,Default k, a ∼ Default k ⊢ c : Constraint, M

Γ, a : k ∈ FV(c),Default k ⊢ c : Constraint, M ∪ {mdef}
Default

Γ, Ignore c ⊢ Ignore c ∼ Msgm, M

Γ, Ignore c ⊢ c : Constraint, M ∪ {m}
Ignore

Γ,Discharge a b ⊢ Discharge a b ∼ Msgm, M

Γ,Discharge a b ⊢ a ∼ b, M ∪ {m}
Discharge

Γ ⊢ c : Constraint, Mc Γ ⊢ ma ∼ mb, M

Γ ⊢ OnlyIf cma ∼ mb, Mc ∪M
OnlyIf

Figure 1: The typing rules that WRIT extends GHC’s type system with. The
judgement Γ, F a1 . . . an ⊢ c, M here judges that with an instance F a1 . . . an in
the context the constraint (or equality) c holds with the set of output messages
M . Here, we write c : Constraint to denote a well-formed constraint c, and
mdef is a compiler-generated message based on the source expression.

Now With Less Cruft! After defining the instances as shown above, WRIT
can use them to weaken our library’s domain-specific constraints. Users can
then easily express and run (possibly insecure) programs operating on labeled
values as if they had the underlying type without overhead:

labeledOr :: Labeled L [Bool ]→ Labeled L Bool

labeledOr (x : xs) = if x then True else labeledOr xs

labeledOr = True

2.5 Ensuring Runtime-Irrelevance

Since it is not always safe to ignore or discharge, we allow users to recover
some safety by using the OnlyIf constructor, as used above in the Discharge

instance for (∗) to assert Coercible. The OnlyIf rule is used to unravel
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F a1 . . . an ∼ Msgmb’ when F a1 . . . an reduces to an OnlyIf cma, and adds the
additional constraints c and ma ∼ mb as obligations. This eventually results in
an equality of the form Msgma ∼ Msgmb, causing GHC to unify mb with ma,
inferring the message to be emitted. Note that OnlyIf a b only holds if both a
and b hold, and b is only emitted if a holds.

2.6 Turning Type-Errors into Warnings

To model the fact that we often want to turn type errors into warnings, all our
rules produce a set of messages, M , which is a union of the messages produced
by any obligations. The Discharge and Ignore rule add a user-defined
message to the set, whereas the Default rule adds a standardized message.
The user-defined messages are built using GHC’s user type-error combinators,
which allows them to use type families to compute the message [139]. The
resulting set of messages is reported as warnings at the end of type-checking, or
alternatively, as type errors if the user passes the plugin the keep-errors flag.

3 Implementation

WRIT operates by examining the wanted and derived constraints passed to the
plugin by GHC. Messages are handled as a set of logs with type variables for the
messages and their origin. The logs are finalized before they are output, with the
type variables representing messages are replaced with the messages themselves.

The plugin applies the Default rule by generating constraints of the form
a ∼ Default k for any free type variable a of kind k in unsolved constraints,
Then, e.g. Default Label will reduce to L, and the variable a is set to L in the
context. In Haskell, there are two types of type variables, rigid and flexible.
Rigid type variables are variables mentioned in the givens, i.e. the constraints.
Flexible type variables are type variables instantiated from a ∀. For example, in
return :: Monad m⇒ a→ m a, m is a rigid type variable, while a is flexible type
variable. When we default a type variable, we must distinguish between rigid
and flexible type variables: for rigid type variables, the generated constraints
take the form of a given, with assertion from WRIT that a is equivalent to
Default Label as the evidence. For flexible type variables, we do not require
evidence, so it suffices to emit a derived to unify a with Default Label.

For the Ignore rule, the plugin asserts that the constraint holds, which
corresponds to the empty typeclass having an instance. It also emits a constraint
that applying the Ignore family to the constraint results in a message wrapped
in the Msg constructor, and adds it to the set of messages as a new type variable
that will unify with the message itself.

Similarly for the Discharge rule, WRIT generates a proof by assertion
that a ∼ b holds (e.g. L ∼ H), and adds the obligation that Discharge a b reduces
to a Msgm, with the fresh flexible type variable m added to the set of messages
M . The evidence is an assertion in the form of a zero-cost coercion [138], which
is safe for runtime-irrelevant types which have the same runtime representation.
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WRIT applies the OnlyIf rule by generating an assertion that OnlyIf cma ∼
mb and checking that both c and ma ∼ mb hold. As an optimization, we solve
equalities of the form:

OnlyIf c1 (OnlyIf c2 (. . . (OnlyIf cn Msgma))) ∼ Msgmb

by checking all the constraints c1, . . . , cn and Msgma ∼ Msgmb, causing GHC
to unify ma with mb.

4 Conclusions and Future Work

We presented WRIT, a type-checker plugin for GHC to weaken the type-
checking process for runtime-irrelevant constraints and representationally-
equivalent types. We believe our work will facilitate developers to adopt more
secure programming practices in Haskell with less overhead, since it is now pos-
sible to start doing so in a more gradual manner. As this is a work in progress,
there are a few avenues for future work:

Safety The WRIT plugin gives users a lot of freedom and allows them to
override the typing rules used in Haskell. We have yet to investigate which
rules can be safely defined by the user, what can go wrong if they define an
invalid rule, and whether we can prevent users from defining such rules.

Overlaps Neither the compiler plugin nor the formalization deal with what
happens when the user-defined instances overlap, which can cause the typing
rules of WRIT to overlap and it is unclear which one to choose. In the plugin
itself, this is handled by preferring Discharge to Ignore and Ignore to
Default. It is clear however that the choice should not affect the semantics of
the compiled program (something yet to be proven), but which typing rule is
preferred can affect the errors or warnings emitted in the process. One possibility
is to design a heuristic that selects the most specific typing rule applicable, to
emit more concrete (and useful) messages, as opposed to more generic ones.

Dynamic and Gradual Typing We want to investigate how relaxing the
type-checking process could interact with Haskell’s dynamic typing capabilities
[140]. Whenever the type checker finds two expressions producing a type
mismatch error, it might be possible to promote them both to Haskell’s dynamic
representation, Dynamic. In this light, the invalid list expression [42, "hello" ]
could be promoted to a list of dynamic values by promoting both 42 and
"hello" to a unified dynamic representation, i.e. [42, "hello"] :: [Dynamic].
Then, dynamically typed values could be demoted to concrete types via runtime
checks inserted automatically. This mechanism could shorten the gap between
Haskell, a strongly typed language, and dynamically typed languages like
Python or Erlang by simply toggling a compiler plugin, enabling us to do
module-based gradual typing [141].
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Abstract

Automatically-synthesized random data generators are an appealing option
when using property-based testing. There exists a variety of techniques that
extract static information from the codebase to produce random test cases.
Unfortunately, such techniques cannot enforce the complex invariants often
needed to test properties with sparse preconditions.

Coverage-guided, property-based testing (CGPT) tackles this limitation by
enhancing synthesized generators with structure-preserving mutations guided
by execution traces. Albeit effective, CGPT relies largely on randomness and
exhibits poor scheduling, which can prevent bugs from being found.

We present Mutagen, a CGPT framework that tackles such limitations
by generating mutants exhaustively. Our tool incorporates heuristics that help
to minimize scalability issues as well as cover the search space in a principled
manner. Our evaluation shows that Mutagen not only outperforms existing
CGPT tools but also finds previously unknown bugs in real-world software.
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1 Introduction

Random Property-Based Testing (RPBT) is a popular technique for finding bugs
using executable testing properties [16], [22], [142]–[144]. A practical limitation
of RPBT is the need for random data generators used to instantiate the testing
properties, and writing highly-tuned generators can take several thousand
person-hours of trial and error [34]. Luckily, there exist several approaches
that automatically synthesize random data generators by extracting static
information from the codebase, e.g., data type definitions and application public
interfaces (APIs). [29], [70], [75], [77], [85], [89]. These approaches, however, are
unable to synthesize generators capable of producing data satisfying complex
invariants not easily derivable from the codebase. Generating random valid
programs to test compilers is a clear example of this limitation [145], where
developers are forced to write specialized generators by hand [65], [146], [147].

Coverage-Guided, Property-Based Testing (CGPT) [34] is a technique
that borrows ideas from the fuzzing community to generate highly-structured
values while still using automatically derived generators. CGPT keeps queues
of interesting previously executed test cases that can be transformed using
structure-preserving mutations to produce new ones. Intuitively, mutating an
existing interesting test case is more likely to produce a new interesting test
case than generating a new one from scratch. Moreover, unlike the generic
bit-level mutators often used by the fuzzing community [5], [7], structure-
preserving mutations specified at the data type level can effectively produce only
syntactically valid mutants. Such an approach has shown to be effective when
fuzzing systems accepting structurally complex inputs [9], [148], [149]. Notably,
CGPT uses the data type information of the inputs to the testing properties to
derive specialized structure-preserving mutators directly and without the need
for external grammars — making strongly-typed programming languages an
ideal match for this technique. In addition, CGPT relies on execution traces
to distinguish interesting test cases — a technique popularized by coverage-
guided fuzzers like AFL [3]. Here, test cases are interesting (and therefore
worth mutating) only when they exercise new parts of the code in the system
under test.

In this work, we establish several aspects of the seminal CGPT approach
by Lampropoulos et al. that leave room for improvement (see Section 2). In
particular: i) if not done carefully, automatically derived structure-preserving
mutators can become “shallow”, unlikely to transform deep test cases more
than superficially; ii) the queuing mechanism can cause delays if interesting
test cases are enqueued frequently and there is no way to prioritize them; and
iii) the heuristic used to assign a “mutation budget” to each interesting test
case (often referred to as a power schedule) requires fine tuning and can be
hard to generalize. Overcoming these obstacles is important to make CGPT
more suitable for testing real-world software.

To tackle these limitations, we introduce Mutagen, a CGPT framework
that applies mutations exhaustively (see Section 3). That is, given an interesting
test case, our tool forces every structure-preserving mutation that can be applied
to it to be evaluated exactly once. This has two main advantages. Firstly, every
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subexpression of the input test case is mutated on the same basis, ensuring that
deep transformations are not omitted due to randomness. Moreover, computing
mutations exhaustively eliminates the need for a heuristic power schedule.

Internally, Mutagen distinguishes two kinds of mutations. On one hand, de-
terministic (pure) mutations encode transformations that yield a single mutated
test case obtained by swapping data constructors around, as well as rearranging
or returning subexpressions. On the other hand, non-deterministic (random)
mutations are used to represent transformations over large enumeration types.
This mechanism let us selectively escape the scalability issues of exhaustiveness
by yielding a random generator that replaces a specific subexpression of an in-
put test case with a randomly generated one. This generator is later sampled
a relatively small number of times. This way Mutagen avoids, for instance,
mutating every number inside a test case into every other number of its range.

Mutagen’s testing loop incorporates two novel heuristics that help finding
bugs more reliably (Section 4). In the first place, our tool uses last-in-first-
out (LIFO) scheduling with priority when enqueueing interesting test cases
for mutation. This way, interesting test cases that discover larger parts of
untested code are given a higher priority. Moreover, LIFO scheduling allows
the testing loop to jump back and forth between enqueued test cases as soon
as new more interesting ones become available, eliminating potential delays
when the mutation queues grow more often than they shrink.

The second heuristic controls the number of test cases sampled from random
mutations by monitoring how often we generate interesting test cases. Whenever
this frequency stalls, Mutagen resets the testing loop and increases the effort
put into sampling random mutations. This way, our tool automatically adjusts
this parameter on the fly.

We validated our ideas in two different ways. We first compared Mutagen
against FuzzChick , the reference CGPT implementation by Lampropoulos et
al., on all the existing cases studies described in their original work. These
case studies focus on finding counterexamples for buggy variations of two
Information-Flow Control (IFC) machines of different complexity. Our results
(Section 6) indicate that: when bugs are relatively easy to find, Mutagen
can reliably find them faster than FuzzChick . On the other hand, when bugs
are harder to find, our tool outperforms FuzzChick in terms of failure rate at
the cost of (possibly) needing more time to find them. Notably, Mutagen is
capable of finding bugs that FuzzChick was not able to find in our evaluation
nor in its original one.

Additionally, we compared Mutagen against QuickCheck [16], the most
widely used RPBT tool in Haskell, on an existing WebAssembly engine im-
plementation of industrial strength. There, Mutagen is capable of reliably
finding 15 planted bugs in the validator and interpreter, as well as 3 previously
unknown ones. Moreover, this case study lets us evaluate the performance
versus the overhead of our tool (and its custom code instrumentation mech-
anism). All in all, our evaluation indicates that testing mutants exhaustively
together with our heuristics to escape scalability issues can be an appealing
technique for finding bugs reliably without sacrificing speed.
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We additionally present threats to validity in Section 7 and discuss related
work in Section 8, to finally conclude in Section 9.

2 Background

This section briefly introduces the motivation, ideas and limitations behind
CGPT [34]. To illustrate it, we focus on a simple property defined over binary
trees. Such a data structure can be defined in Haskell with a custom data type
with two data constructors for leaves and branches respectively:

data Tree a = Leaf a | Branch (Tree a) a (Tree a)

The type parameter a indicates that trees can be instantiated using any type
as payload, so the value Leaf True has type Tree Bool, whereas the value
Branch (Leaf 1) 2 (Leaf 3) has type Tree Int. If we assume the existence of a
function balanced of type Tree a→ Bool that asserts that a tree satisfies some
notion of balancedness, we can write properties to validate that the operations
defined over binary trees preserve this invariant. For instance, to validate the
implementation of an insert function, we assert that, given an element x and
a balanced tree t as input, inserting x into t will produce a balanced tree as
output:

prop insert :: a→ Tree a→ Property

prop insert x t = balanced t ⇒ balanced (insert x t)

(The definitions of balanced and insert are not important here.) The arrow
operator ( ⇒ ) indicates that balanced t is a precondition of this property, so
test cases where the input tree is unbalanced will get discarded prematurely.

The only missing piece is a random generator of trees. For this, we can
define a näıve generator for trees of integers as:

genTree (size) = if size == 0

then do {x← genInt; return (Leaf x)}
else oneof [do {x← genInt; return (Leaf x)},

do {l← genTree (size− 1);
x← genInt;
r← genTree (size− 1);
return (Branch l x r)} ]

This definition (simplified to make it more accessible) follows a common type-
directed approach used by some existing generator synthesizer tools. At each
step, genTree picks a Tree data constructor with uniform probability, and
calls itself to generate recursive subexpressions, carefully reducing the input
size limit size by a unit at a time. This ensures termination by generating
only leaves when the size reaches zero (case size == 0). Integers payloads are
generated by calling an external random generator (genInt) defined elsewhere.

Readers familiar with RPBT will notice that genTree is not suitable for
testing prop insert with QuickCheck , as this generator produces mostly
unbalanced trees which do not satisfy the property’s precondition, thus leaving
its postcondition (balanced (insert x t)) largely untested.
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2.1 Coverage-Guided Property-Based Testing

CGPT alleviates the problem of testing properties with non-trivial preconditions
while using automatically derived generators by enhancing the testing process
with: i) target code instrumentation, to capture execution information from
each test case; and ii) high-level, structure-preserving mutations, to produce
syntactically valid test cases from existing ones.

Using code instrumentation in tandem with mutations is a well-known
technique in the fuzzing community [3], [4], [31]–[33]. Notably, CGPT can
additionally use the result of the testing properties’ preconditions to distinguish
semantically valid test cases from invalid ones. This is useful to favor mutating
valid test cases over discarded ones.

The CGPT testing loop uses two queues to store valid and discarded
previously executed test cases along with a mutation budget that controls how
many times they can be mutated before being finally thrown away. This budget
is calculated using a heuristic derived from AFL’s power schedule, i.e., more
budget to test cases that lead to shorter executions, or that discover more parts
of the code. On each iteration, the testing loop selects the next test case by
mutating the first value on the queue of valid test cases. If such queue is empty,
it mutates the first test case from the queue of discarded test cases. If both
queues are empty, CGPT generates a new random value from scratch. The
loop then runs this test case and evaluates whether it was interesting. If the
test case was interesting, it gets enqueued into its corresponding queue (either
valid or discarded), This process alternates between random generation and
mutation until a bug is found or the test limit is reached.

Limitations of CGPT Lampropoulos et al. compared the mean-time-to-
failure (MTTF) of CGPT against random testing using both automatically
derived generators and manually-written ones, where their results show that
CGPT lies in between these two approaches. While MTTF is a useful global
metric, we argue that a meticulous evaluation ought to consider failure rate, i.e.,
the ability to find a bug in a given run as an important metric when comparing
PBT tools. After repeating each original experiment 10 times, we observed that
FuzzChick was only able to find 7 (out of 20) and 18 (out of 33) bugs with 100%
failure rate in the two IFC machine case studies. Notably, FuzzChick was unable
to find any counterexample for 3 of the planted bugs. With this observation in
mind, we consider three aspects to tackle CGPT’s reliability issues:

• Mutators distribution: for simplicity, the mutators proposed by Lampropoulos
et al. are derived to follow a top-down approach: mutations can happen at the
top level or be recursively applied to an immediate subexpression of the input
test case with approximately the same probability. This makes deep recursive
mutations very unlikely, as their probability decreases multiplicatively with
each recursive call. Hence, these mutators can only effectively transform
shallow test cases, excluding scenarios involving deeply nested data structures.
Ideally, mutations should happen on every subexpression of the input test
case on a reasonable basis.
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• Scheduling: CGPT uses single-ended queues to store valid and discarded
interesting test cases, where new test cases are placed at the end of their
corresponding queue. If a test case discovered a whole new portion of the
target code, it will not be mutated until the rest of the queue ahead of it
gets processed, limiting the effectiveness of the testing loop whenever queues
grow more often than they shrink. In an extreme case, interesting test cases
might not get processed at all within the testing budget. Thus, we should
prioritize mutating novel test cases right away.

• Power schedule: it is unclear how well this heuristic assigns a budget to each
interesting test case. On one hand, assigning too much budget to not-so-
interesting wastes precious testing time. On the other hand, assigning too
little budget to interesting test cases might prevent bugs from being discovered
at all! Finding a balanced heuristic can be quite challenging in the general
case. Ideally, the scheduling mechanism should be as unbiased as possible.

3 Mutagen

This section describes the main ideas behind Mutagen, our revised CGPT
tool written in Haskell.21

Mutagen works by mutating test cases in an exhaustive and precise
manner, where i) each subexpression of a test case is associated with a set of
structure-preserving mutations, and ii) each one of these mutations is scheduled
exactly once. We realized that, by using an exhaustive mutation approach, we
avoid needing a heuristic power schedule to assign a budget to each interesting
test case. Moreover, computing mutants exhaustively ensures that interesting
mutations are not omitted or overly exercised due to randomness. This approach
is inspired by exhaustive bounded testing tools like SmallCheck [68] or Korat
[150] — refer to Section 8 for a detailed discussion.

3.1 Exhaustive Mutations

In Mutagen, mutators are defined as the set of mutants that can be obtained
by transforming the input test case at the top-level (the root data constructor).
For a given type a, we represent a mutator of a’s with a function from a’s to a
list of mutants. In Haskell, we introduce the type synonym:

type Mutator a = a→ [Mutant a]

As mentioned earlier, concrete mutants can be obtained either from a pure or
a random mutation, which we define as follows:

data Mutant a = PURE a | RAND (Gen a)

We first focus on pure mutants, which encode deterministic transformations
over the outermost data constructor of the input — recursive mutations will
be introduced soon.

21Although we make use of Haskell’s powerful type system, our ideas should apply to other
statically typed languages with minor effort.
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mutate t = case t of
Leaf x→ [
PURE (Branch def x def)

]
Branch l x r→ [
PURE l, PURE r,
PURE (Leaf x),
PURE (Branch l x l),
PURE (Branch r x r),
PURE (Branch r x l)

]

Figure 1: Mutagen Tree mutator.

These transformations can either i) return an immediate subexpression of
the same type as the input, or ii) swap the outermost data constructor with a
(possibly) different one of the same type, reusing the immediate subexpressions
of the input in any combination that produces a well-typed value.

Fig. 1 illustrates a mutator for the Tree data type. This definition simply
enumerates mutants that transform the outermost data constructor. Moreover,
notice how a default value def used to fill the subtrees when “growing” a
leaf into a branch. In practice, def corresponds to the simplest expression
we can construct for the mutant to be type-correct. In our example, the
default Tree value is a leaf containing the smallest value of the payload type,
e.g., Leaf 0 is the default value of Tree Int. Using a small default value,
as opposed to a randomly generated one (as done by the original CGPT)
is also inspired by exhaustive bounded testing tools, and avoids introducing
unnecessary randomness when growing data constructors.

Formally, for a type T defined in terms of the data constructors Ci, each
one with fields of (possibly different) types tij :

T := C1 t11 t12 ... | C2 t21 t22 ... | ...

Mutagen synthesizes the mutate function so it pattern matches on the root
data constructor of the input as follows:

mutate(Ci x1 x2 ...) = mutr(Ci x1 x2 ...) ∪ muts(Ci x1 x2 ...)

Firstly, mutr computes the set of possible mutations that return an immediate
subexpression of the same type as the input:

mutr(Ci x1 x2 ...) = {PURExk | xk∈filter(T, {x1, x2, ...})}

Then, muts builds every mutation that swaps the root data constructor with a
(possibly) different one, reusing (or defaulting to) compatible subexpressions
whenever possible:
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muts(Ci x1 x2 ...)=

PURE(Cj x
′
1 x

′
2 ...)

∣∣∣∣∣∣∣∣∣∣
Cj ∈{C1, C2, ...}
x′
k∈filter(tjk, {x1, x2, ...})

Cj x
′
1 x

′
2 ... ̸= Ci x1 x2 ...


The helper filter simply returns the subset of the input values X that match
the type t, whereas filter returns the default value of the type t (deft) if the
result of filter is empty:

filter(t,X) = {x | x∈X, typeof(x) = t}

filter(t,X) =

{
filter(t,X) if filter(t,X) ̸= ∅
{deft} otherwise

This ensures that a small constructor can always be grown into a larger one by
inserting default subexpressions whenever needed. (Recalling the Tree mutator
from Fig. 1, we show this for the case of mutating a Leaf into a Branch.)

We can finally focus on random mutants, which let us selectively avoid ex-
haustiveness when mutating values of large enumeration types (e.g. numbers).
Instead of creating a PURE mutant for every numerical subexpression exhaust-
ively, we condense them into a generator that can be sampled to produce new
random values. This way, a mutator for integers becomes:

mutate n = [RAND genInt]

This approach allows Mutagen to control the amount of effort put into
mutating any subexpression of an input test case associated with a random
mutation. This can avoid dedicating unnecessary effort to mutating data
payloads when the execution of the testing property or the system under test
is independent of their values (see Section 4).

Mapping Top-Level Mutations Everywhere So far we have defined
mutations that transform only the root node of the input. To apply these
mutations to every subexpression we use two utility functions. Firstly, a
function Positions traverses the input and builds a Rose tree [151] of mut-
able positions, i.e., lists of indices encoding the path from the root to every
mutable subexpression. For instance, the mutable positions of the value
Branch (Leaf 1) 2 (Leaf 3) are:

Positions

 Branch

Leaf

1

2 Leaf

3

 =

[]

[0]

[0,0]

[1] [2]

[2,0]

Then, we define a function MutateInside that takes a desired position within
an input test case and mutates its corresponding subexpression, returning
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Algorithm 1: Mutagen Testing Loop

Function Loop(P, N, R, gen):
i ← 0
TLog, QValid, QDiscarded ← ∅
while i < N do

x ← Pick(QValid, QDiscarded, gen)
(result, trace) ← WithTrace(P(x))
if not result then return Bug(x)
if Interesting(TLog, trace) then

if not Discarded(result) then
batch ← CreateMutationBatch(x, R)
Enqueue(QValid, batch)

else if not Discarded(Parent(x)) then
batch ← CreateMutationBatch(x, R)
Enqueue(QDiscarded, batch)

i ← i+1

return Ok

a list of mutants. This function traverses the desired position, calling itself
recursively until it reaches the desired subexpression, where a mutation encoded
by mutate can be applied directly. The definition of these functions consists of
boilerplate code that our tool synthesizes automatically, thus we omit them to
preserve space.

3.2 Testing Loop

We now introduce the base testing loop of Mutagen, outlined in Algorithm
1. Like in CGPT, we use two queues, QValid and QDiscarded to store valid
and discarded interesting test cases, respectively. Our tool precomputes all the
mutations of a given test case before enqueueing them. These mutations are put
together into lists we call mutation batches — one for each mutated test case.
To initialize a mutation batch (outlined in Algorithm 2), we first flatten all the
mutable positions of the input test case in level order. Then, we iterate over
all these positions, retrieving all the mutants associated to each corresponding
subexpression. For each one of these: i) if it is a pure mutant carrying a concrete
mutated value, we enqueue it into the mutation batch directly; otherwise ii) it
is a random mutant that carries a random generator with it, in which case
we sample and enqueue R random values using this generator, where R is a
parameter set by the user. In the end, we simply return the accumulated batch.

Then, the seed selection algorithm (Algorithm 3) picks the next test case
using the same criteria as CGPT, prioritizing valid test cases over discarded
ones, falling back to random generation when necessary. For this, we simply
pick the next mutated test case from the current precomputed batch, jumping
to the next batch in line when the current one becomes empty.
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Algorithm 2: Mutation Batch Initialization

Function CreateMutationBatch(x, R):
batch ← ∅
for pos in Flatten(Positions(x)) do

for mutant in MutateInside(pos, x) do
switch mutant do

case PURE x̂ do
Enqueue(x̂, batch)

case RAND gen do
repeat R times

x̂ ← Sample(gen)
Enqueue(x̂, batch)

return batch

Algorithm 3: Mutagen Seed Selection

Function Pick(QValid, QDiscarded, gen):
if not Empty(QValid) then

batch ← Deque(QValid)
if Empty(batch) then Pick(QValid, QDiscarded, gen)
else

PushFront(QValid, Rest(batch))
return First(batch)

if not Empty(QDiscarded) then
batch ← Deque(QDiscarded)
if Empty(batch) then Pick(QValid, QDiscarded, gen)
else

PushFront(QDiscarded, Rest(batch))
return First(batch)

else return Sample(gen)

Having selected the next test case, the testing loop proceeds to execute it,
capturing both the result (valid, discarded, or failed) and its execution trace.
If the test case fails, it is reported as a bug. If not, the algorithm evaluates if
it was interesting based on its trace information and the one from previously
executed test cases (represented by TLog). If the test case was interesting,
its mutants are precomputed and enqueued on its corresponding queue. This
process is repeated until finding a bug or reaching the test limit N.

A notable difference with CGPT’s testing loop is the criterion for enqueuing
discarded tests. We found that, especially for large data types, the queue of
discarded candidates tends to grow disproportionately large, making it hardly
usable while consuming large amounts of memory. To improve this, we resort
to mutating discarded tests cases only when we have some evidence that they
are “almost valid.” For this, each mutated test case remembers whether its
parent (the original test case they derive from) was valid. Then, we enqueue
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discarded test cases only if they descend from a valid parent (see Algorithm 1).
This way we fill the discarded queue with lesser but more interesting test cases.

4 Mutagen Heuristics

In this section we introduce two heuristics implemented on top of the base
testing loop of Mutagen described in Section 3.

4.1 Priority LIFO Scheduling

This heuristic tackles the issue of enqueuing new interesting test cases at the
end of possibly long queues of not-so-interesting ones. For this, Mutagen
captures the execution trace of each test case and computes its novelty relative
to previously executed ones with respect to their edge coverage, i.e, test cases
that discover new edges in the system under test are considered interesting,
and their priorities are proportional to the number of edges they discovered.

Using this mechanism, we can modify Mutagen’s base testing loop replacing
each mutation queue with a priority queue indexed by the novelty of their test
cases. These changes are illustrated in Algorithm 4. Statements in red indicate
important changes to the base algorithm, whereas ellipses denote parts of the
code that remain unchanged.

To pick the next test case, we retrieve the first one with the highest priority.
Then, when we find a new interesting test case, it gets enqueued at the beginning
of the queue of its corresponding priority. This allows the testing loop to jump
immediately onto mutating new interesting test cases as soon as they are found
(even at the same priority), and to jump back to previous test cases as soon as
mutants become less novel.

4.2 Tuning Random Mutations Parameter

As introduced in Section 3, our tool is parameterized by the number of times
it samples the random generators associated with random mutations (R). But,
how many test cases should we sample? Answering this question precisely can
be challenging, so this second heuristic aims to alleviate the problem.

We found that the smaller the number of times we sample from random
mutations, the easier it is for the trace log that records executions to get
saturated, i.e., when interesting test cases stop getting discovered or are
discovered very seldom. We realized that we can use this information to
dynamically adapt the number of times we sample from random mutations.
This idea is described in Algorithm 5. The process is as follows: i) we start
the testing loop with the R parameter set to one, and ii) each time we find
that a test is not interesting (i.e. boring), we increment a counter. Then, iii) if
we have not produced any interesting test case after a certain number of tests
(1000 tests seems to be a reasonable threshold in practice), we duplicate the
number of random mutations and the threshold. Additionally, we reset the
trace log so interesting test cases found on a previous iteration can be found
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Algorithm 4: Priority LIFO Heuristic

Function Loop(P, N, R, gen):
· · ·
x ← Pick(QValid, QDiscarded, gen)
(result, trace) ← WithTrace(P(x))
· · ·
if Interesting(TLog, trace) then

if not Discarded(result) then
batch ← CreateMutationBatch(x, R)
prio ← TracePriority(TLog, trace)
PushFront(QValid, prio, batch)

· · ·
Function Pick(QValid, QDiscarded, gen):

if not Empty(QValid) then
(batch, prio) ← DequeMax(QValid)
if Empty(batch) then Pick(QValid, QDiscarded, gen)
else

PushFront(QValid, prio, Rest(batch))
return First(batch)

if not Empty(QDiscarded) then
/* Analogous to the case above */

· · ·

and enqueued for mutation again with a higher effort dedicated to sampling
from random mutations.

Notably, this heuristic can be useful when the execution of the system under
test depends on invariants over numeric data (e.g, the number of pixels declared
by the header of an image matching the size of its actual payload). There,
starting with a single random mutation will quickly saturate the trace log with
discarded (invalid) tests, and this heuristic will continuously increase the effort
put into sampling from random mutations until some randomly generated value
satisfies the required invariant, making the overall test case valid.

5 Case Studies

We evaluated the performance of Mutagen using three case studies. The
first two are IFC abstract machines that enforce noninterference [152], [153]
using runtime checks. While similar in spirit, these abstract machines have a
completely different complexity. The first one follows a relatively simple stack-
based execution model, with a limited number of instructions. The second one
is substantially more featureful, including registers, dynamic memory allocation
and a larger instruction set, among others. Notably, both machines were
originally proven correct by Amorim et al. [154] in Coq, and later degraded
by systematically introducing bugs in their IFC policy enforcing mechanism.
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Algorithm 5: Adaptive Random Mutations Heuristic

Function Loop(P, N, gen):
boring ← 0; reset ← 1000; R ← 1
· · ·
while i < N do

if boring > reset then
TLog ← ∅
reset ← reset * 2
R ← R * 2

· · ·
if not result then return Bug(x)
if Interesting(TLog, trace) then

boring ← 0
· · ·

else boring ← boring + 1
· · ·

Lampropoulos et al. borrowed these case studies from existing literature [38],
[39] to compare FuzzChick against RPBT using automatically derived and
hand-tuned random generators. Here, we reproduce all their experiments and
compare them against our tool. Worth mentioning, we mechanically translated
these case studies to Haskell in order to run Mutagen on their test suites.

The third case study evaluates Mutagen in a realistic scenario, and targets
haskell-wasm [155], an existing WebAssembly engine of industrial strength.
Unfortunately, the current state of FuzzChick ’s development does not allow to
easily port new case studies into its framework, so comparing Mutagen with
FuzzChick on this case study has been out of the scope of this work. Instead,
we compare Mutagen against QuickCheck , evaluating its effectiveness versus
the relative overhead of our custom code instrumentation.

5.1 IFC Stack and Register Machines

These abstract machines enforce noninterference, a hyper-property based on the
notion of indistinguishability. Intuitively, two machine states are indistinguish-
able if they only differ on secret data. Using this notion, the variant of nonin-
terference we are interested in is called single-step noninterference [38] (SSNI).
Given two indistinguishable machine states, SSNI asserts that running a single
instruction on both machines brings them to resulting states that are also in-
distinguishable. To achieve this, every runtime value handled by these abstract
machines is labeled with a security level, i.e., L (for “low” or public) or H (for
“high” or secret). Security labels are then propagated throughout the execution
of the program whenever the machines execute an instruction. For this, both
machines use a different rule table to specify their IFC policy. These tables
store the dynamic check that each machine needs to perform before running
each instruction, along with the resulting security labels corresponding to the
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program counter and the instruction result. For instance, to execute the Store

instruction (which stores a value in a memory pointer), the IFC Stack machine
checks that both the labels of the program counter and the pointer together can
flow to the label of the destination memory cell. If this condition is not met,
this machine immediately halts its execution. After this check, the machine
overwrites the value at the destination cell and updates its label with the max-
imum sensibility of the involved labels. In the rule table, this looks as follows:

Instruction Precondition Check Final PC Label Final Result Label
Store lpc ∨ lp ⊑ lv lpc lv′ ∨ lpc ∨ lp

Where lpc, lp, lv, and lv′ represent the labels of: the program counter, the
memory pointer, and the old and new values stored in that memory cell. The
symbol ∨ simply denotes the join of two labels, i.e., the maximum of their
sensibilities. To preserve space, we encourage the reader to refer to the work of
Hritcu et al. [38], [39] and Lampropoulos et al. [34] for further details about
the implementation and semantics of these case studies.

Bugs are systematically injected in the IFC enforcing mechanism of both
machines by weakening the checks stored in their corresponding IFC rule table.
For instance, the following are the buggy rule variations (in red) for the Store

instruction of the IFC Stack machine:

Instruction Precondition Check Final PC Label Final Result Label
Store lpc ⊑ lv lpc lv′ ∨ lpc ∨ lp
Store lp ⊑ lv lpc lv′ ∨ lpc ∨ lp
Store lpc ∨ lp ⊑ lv ⊥ lv′ ∨ lpc ∨ lp
Store lpc ∨ lp ⊑ lv lpc lpc ∨ lp
Store lpc ∨ lp ⊑ lv lpc lv′ ∨ lp
Store lpc ∨ lp ⊑ lv lpc lv′ ∨ lpc

This way, there are 20 different buggy ways the IFC Stack machine can
be tampered with to violate its IFC policy and invalidate SSNI. Likewise, 33
different IFC-violating bugs can be inserted in the IFC Register machine.

The challenge with testing SSNI for these two case studies is to satisfy its
sparse precondition: we need to generate two valid indistinguishable machine
states to even proceed to execute the next instruction. Lampropoulos et al.
demonstrated that generating two independent machine states using QuickCheck
has virtually no chance of producing valid indistinguishable ones. However,
using the mutation mechanism, we can obtain a pair of valid indistinguishable
machine states by generating a single valid machine state (something still hard
but much easier than before), and then producing a similar mutated copy. This
way, we have a higher chance of producing two almost identical states that
pass the sparse precondition.

5.2 WebAssembly Engine

WebAssembly [156] is a language designed for executing low-level code on
the web. WebAssembly programs are first validated and later executed in a
sandboxed environment. The language is relatively simple: in essence i) it
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Id Subsystem Category Description
1 Validator Bug Invalid memory alignment validation
2 Validator Discrepancy Validator accepts returning multi-value blocks
3 Interpreter Bug Function invoker ignores arity mismatch
4 Interpreter Bug Allowed out-of-bounds memory access
5 Interpreter Discrepancy Non-standard NaN reinterpretation

Table 3: Issues found by Mutagen in haskell-wasm.

Id Subsystem Description
1 Validator Wrong if-then-else type validation on else branch
2 Validator Wrong stack type validation
3 Validator Removed function type mismatch assertion
4 Validator Removed max memory instances assertion
5 Validator Removed function index out-of-range assertion
6 Validator Wrong type validation on i64.eqz instruction
7 Validator Wrong type validation on i32 binary operations
8 Validator Removed memory index out-of-range assertion
9 Validator Wrong type validation on i64 constants
10 Validator Removed alignment validation on i32.load instruction
11 Interpreter Wrong interpretation of i32.sub instruction
12 Interpreter Wrong interpretation of i32.lt u instruction
13 Interpreter Wrong interpretation of i32.shr u instruction
14 Interpreter Wrong local variable initialization
15 Interpreter Wrong memory address casting on i32.load8 s instruction

Table 4: Bugs injected into haskell-wasm.

contains only four base types, representing both integers and IEEE754 floating-
point numbers of either 32 or 64 bits; ii) values of these types are manipulated
by functions written using sequences of stack instructions; iii) functions are
organized in modules and must be explicitly imported/exported; iv) memory
blocks can be imported, exported, and grown dynamically; among others.
WebAssembly semantics are fully specified, and programs must be consistently
interpreted across engines — despite some subtle details we will address soon.
For this, the WebAssembly standard provides a reference implementation with
all the functionality expected from a compliant engine.

Our tool is an attractive match for testing WebAssembly engines: most of
the programs that can be represented using WebAssembly’s AST are invalid,
and automatically derived random generators cannot satisfy the invariants
required to produce interesting test cases.

In this work, we apply Mutagen to test the two most complex subsystems
of haskell-wasm: the validator and the interpreter — both being previously
tested using a unit test suite. For this, we took advantage of the reference
implementation to find discrepancies (that could potentially lead to bugs) via
differential testing [157]. Our testing properties assert that any result produced
by haskell-wasm matches that of the reference implementation. Notably,
Mutagen discovered three latent bugs that the existing test suite was unable to
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reveal. Moreover, Mutagen exposed two other discrepancies between haskell-
wasm and the reference implementation. These discrepancies trigger parts of the
specification that were either not yet supported by the reference implementation
(multi-value blocks), or that produce a well-known non-deterministic undefined
behavior (NaN reinterpretation) [146]. All these findings (see Table 3) were
confirmed by the authors of haskell-wasm.

Having sorted these issues out, we mechanically injected 10 new bugs in
the validator as well as 5 new bugs in the interpreter of this engine (see Table
4). These bugs either i) remove an existing integrity check (to weaken the
WebAssembly type-system/validator); or ii) simulate a copy-paste bug [158],
replacing the implementation of an instruction with a compatible one (e.g.,
i32.add by i32.sub).22

Testing the WebAssembly Validator Our approach is to assert that,
whenever a randomly generated (or mutated) WebAssembly module is valid
according to haskell-wasm, then the reference implementation agrees upon it.
In Haskell, we write the property:

prop validator m = isValidHaskellWasm m ⇒ isValidRef m

The precondition (isValidHaskellWasm m) runs the input WebAssembly mod-
ule m against haskell-wasm’s validator, whereas the postcondition (isValidRef m)
serializes m, runs it against the reference implementation and checks that no
errors are produced.

We note that, although we only focus on finding false negatives, a compre-
hensive test suite should also test for false positives, i.e., when a module is
valid and haskell-wasm rejects it.

Testing the WebAssembly Interpreter Testing the WebAssembly inter-
preter is substantially more complex than testing the validator since it requires
running and comparing the output of the test case programs. To achieve this,
the generated test cases need to comply with a common interface that can be
invoked both by haskell-wasm and the reference implementation. For simpli-
city, we write a helper function mkModule to build a stub WebAssembly module
that initializes one memory block and exports a single function. This helper is
parameterized by the definition of the module’s single function, along with its
type signature and name. Then, we can use mkModule to define a testing prop-
erty parameterized by a function type, along with its definition and invocation
arguments:

prop interpreter ty fun args =
do let m = mkModule fun ty "f"

resHaskellWasm← invokeHaskellWasm m "f" args

resRef ← invokeRef m "f" args

return (resHaskellWasm === resRef)

22These bugs were inspired by the real bug #1 we found prior to this step.
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This testing property instantiates a module stub m with the input WebAssembly
function (fun) and its type signature (ty). Then, it invokes the function f

of the module m both on haskell-wasm and the reference interpreter with the
provided arguments (args). Finally, the property asserts whether their res-
ults are equivalent.23 Interestingly, equivalence does not imply equality: Non-
deterministic operations in WebAssembly like NaN reinterpretations can pro-
duce different equivalent results (as exposed by the discrepancy #5 in Table
3), and our equivalence relation needs to take that into account.

Using this testing property directly might not sound wise, as randomly
generated lists of input arguments will be very unlikely to match the type
signature of randomly generated functions. However, it lets us test what
happens when programs are not properly invoked, and it quickly discovered
the previously unknown bug #3 in haskell-wasm mentioned above. Having
fixed this issue, we define a specialized version of prop interpreter that fixes
the type of the generated function to take two arguments x and y (of type I32

and F32, respectively) and return an I32 as a result:

prop interpreter i32 f x y =
prop interpreter (Type {args = [I32, F32], res = [I32]})

f [VI32 x, VF32 y]

This property lets us generate functions of a fixed type and invoke them with
randomly generated inputs of the expected types. We use this property to find
all the bugs injected into haskell-wasm’s interpreter in the next section.

6 Evaluation

We repeated each experiment 10 times in a workstation with 64GB of RAM
and an Intel Core i7-8700 CPU. In all cases, we used a one-hour timeout to stop
the execution if an experiment had not yet found a counterexample. Moreover,
we followed the approach taken by Lampropoulos et al. and collected the mean-
time-to-failure (MTTF) of each bug, i.e., how quickly a bug can be found in wall
clock time. In addition, we collected the failure rate (FR) observed for each bug,
i.e. the proportion of times each tool finds each bug within the one-hour testing
budget. Unlike Lampropoulos et al., we only aggregate the MTTF of successful
runs, i.e, when a bug was found, since doing so for all runs heavily inflates
results when the failure rate is below 100%. In all case studies, we additionally
show the effect of the heuristics described in Section 4 by individually disabling
them. We call these variants no LIFO and no reset. For no reset, the number
of times we sample random mutants (R) is no longer controlled by Mutagen,
so we arbitrarily fixed it to R=25 throughout the experiment. 24

23We also set a short timeout to discard potentially diverging programs.
24A replication package [159] is available for reviewing purposes.
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6.1 IFC Stack and Register Machines

The results of these case studies are shown in Fig. 2 and Fig. 3, respectively.
In both cases, the injected bugs are ordered by the failure rate achieved by
FuzzChick in decreasing order. Moreover, notice the logarithmic scale used on
the MTTF.

Firstly, we observed a statistically significant improvement in terms of the
overall failure rate: Mutagen achieved 100% and 90.9% failure rate (versus
71% and 74.2% for FuzzChick) in the IFC Stack and Register cases studies,
respectively.

Moreover, if we observe the MTTF achieved by each tool, we recognize in
both cases that Mutagen is significantly faster than FuzzChick when finding
“easy” bugs, i.e., those which both tools can reliably find on each run. However,
the results are not as intuitive for the “harder” bugs, i.e, where the failure rate
of some tool drops below 100%. To better understand the tradeoffs between
these two metrics, we grouped bugs into four categories based on the statistical
evidence25 we observed over the corresponding MTTF achieved by each tool:
i) when FuzzChick is faster than Mutagen, ii) when Mutagen is faster than
FuzzChick , iii) when results are inconclusive, i.e., no statistical evidence in favor
of either tool, and iv) when FuzzChick always fails to find a bug. We avoid
considering the case where Mutagen always fails to find a bug as this scenario
did not occur in our experiments. In each case, we additionally computed the
mean failure rate across bugs for each tool. These curated results are shown
in Tables 5 and 6. In both cases, we can observe that our tool is faster than
FuzzChick for a significant number of bugs, while there are only two bugs in the
IFC Register Machine case study where FuzzChick consistently outperforms
Mutagen. The inconclusive cases reveal that Mutagen achieves a considerably
larger failure rate without being significantly slower than FuzzChick .

In terms of the Mutagen heuristics, we observed that disabling our LIFO
scheduling (case no LIFO) does not show a large impact on the results. We
noticed that, for these case studies, when a new interesting test case gets
enqueued, all its mutants (and their descendants) are quickly processed before
new ones start piling up, keeping the mutation queues empty most of the
time (generation mode). On the other hand, dynamically tuning the random
mutation parameter seems critical to find the harder bugs, as disabling it (case
no reset) heavily affects Mutagen’s failure rate in such cases.

6.2 WebAssembly Engine

The results of this case study are shown in Fig. 4, ordered by the MTTF
achieved by Mutagen. We first focus on the bugs injected in the validator
(Fig. 4 left). There, we quickly conclude that QuickCheck is not well suited
to find most of the bugs — it merely finds the easier bugs #5 and #3 in just
1 out of 10 runs. The reason behind this is simple: an automatically derived
generator is virtually unable to produce valid WebAssembly modules other than
the trivial empty one. Using the same random generator, however, Mutagen

25Based on each tail of a Mann-Whitney U-Test with threshold p < 0.05.
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Bugs where Count
Mean Failure Rate

FuzzChick Mutagen
FuzzChick is faster 0 - -
Neither tool is faster 2 0.35 1
Mutagen is faster 17 0.79 1
FuzzChick always times out 1 0 1

Table 5: Curated results for the IFC Stack Machine case study.

Bugs where Count
Mean Failure Rate

FuzzChick Mutagen
FuzzChick is faster 2 0.8 0.75
Neither tool is faster 8 0.52 0.8
Mutagen is faster 20 0.93 1
FuzzChick always times out 3 0 0.7

Table 6: Curated results for the IFC Register Machine case study.

consistently finds every bug in less than 4 seconds. Moreover, disabling the
heuristics does not affect the failure rate but tends to add some time overhead
to the MTTF, where the no LIFO and no reset variants are 2.1x and 1.4x
slower than the baseline on average.

If we now focus on the bugs injected into the interpreter (Fig. 4 right),
we notice that finding bugs now requires minutes instead of seconds, as both
interpreters need to validate and run the inputs before producing a result to
compare. We also observe a significant improvement in the performance of
QuickCheck in terms of failure rate. This is of no surprise: we deliberately
reduced the search problem to generating functions bodies instead of complete
WebAssembly modules. Notably, QuickCheck finds counterexamples for the
bug #14 almost instantly. This is because this bug can be found using a very
small counterexample, and QuickCheck prefers sampling small test cases at
the beginning of the testing loop. While Mutagen uses this approach when
in generation mode, our scheduler does not take the size of an interesting test
case into account when computing its priority — future work will investigate
this possibility. Nonetheless, Mutagen still outperforms QuickCheck on the
remaining bugs in terms of MTTF. Moreover, the no reset variant resulted in
a 2.9x average slowdown with respect to the baseline, whereas the no LIFO
variant shows a subtle speedup at the cost of no longer finding the bug #15
with 100% failure rate.

Finally, this case study allows us to analyze the overhead introduced by the
custom code instrumentation and internal processing used in Mutagen versus
the black-box approach used by QuickCheck . Table 7 compares the total number
of executed and passed tests per second achieved by each tool. Although Muta-
gen is considerably slower than QuickCheck at executing tests (roughly 9x and
49x slower when testing prop validator and prop interpreter i32 respect-
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Figure 4: QuickCheck versus Mutagen in the WebAssembly case study.

ively), it runs substantially more valid tests that pass the sparse preconditions
in the same amount of time, which can ultimately lead us to find bugs faster.

7 Threats to Validity

We evaluated Mutagen in three different scenarios that require generating
highly-structured inputs, where it was able to find several planted and real
previously-unknown bugs. In particular, we compared our tool against all the
existing case studies previously considered by Lampropoulos et al. However, we
cannot generalize that our tool will be effective at finding bugs in other scenarios.
To compensate, Mutagen is a fully-automated tool that synthesizes all the
needed boilerplate, making it an appealing alternative whenever QuickCheck is
unable to penetrate properties with sparse preconditions.

As mentioned in Section 5, our evaluation required us to translate both
cases studies used by Lampropoulos et al. from Coq to Haskell. This was
partly aided by Coq’s code extraction mechanism. However, this approach
still requires some manual intervention and produces Haskell code that is often
hard to read. To our advantage, both case studies are implemented using basic
Coq features, so translating them to equivalent Haskell code could be done
syntactically. As such, we do not have formal guarantees that our Haskell
version of the code behaves exactly as the original one.

Property
QuickCheck Mutagen

Total Passed Total Passed
prop validator 31882.78 0.0003 3505.68 756.52
prop interpreter i32 106619.31 18.02 2142.14 500.67

Table 7: Tests per second on the WebAssembly case study across tools.
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8 Related work

Automated Random Data Generation DRAGEN [85] is a meta-program-
ming tool that synthesizes random generators from data types definitions, using
stochastic models to predict and optimize their distribution toward user-defined
target ones. DRAGEN2 [89] extends this idea with support for extracting
library APIs and function input patterns from the codebase. QuickFuzz [70],
[71] is a fuzzer that exploits these ideas to synthesize random generators from
existing Haskell libraries, which are combined with off-the-shelf low-level fuzzers
to find bugs in heavily used programs.

Automatically deriving random generators is substantially more complic-
ated when the generated data must satisfy sparse preconditions. Claessen et al.
[64] developed an algorithm for generating inputs constrained by boolean pre-
conditions with almost-uniform distribution. Lampropoulos et al. [72] extended
this approach by adding a limited form of constraint solving controllable by
the user. Recently, Lampropoulos et al. [75] proposed a mechanism to obtain
constrained generators automatically from inductively defined relations in Coq.

All these generational approaches are somewhat orthogonal to the ideas
behind Mutagen, and while our tool is tailored to improve the performance
of poor automatically derived generators, it can benefit from using better
generators to find initial (valid) interesting seeds faster.

Coverage-Guided Fuzzing AFL [3] is the reference tool when it comes to
coverage-guided fuzzing. AFLFast [160] extends AFL using Markov chain mod-
els to tune the power scheduler toward testing low-frequency paths. Muta-
gen’s scheduler is deliberately simple and does not account for path frequency

— future work should investigate this possibility. CollAFL [161] is a variant of
AFL that uses path- instead of edge-based coverage to distinguish executions
more precisely by reducing path collisions. We tested this approach in Muta-
gen and found that some bugs can be found faster and more reliably using a
prefix-tree-based prioritization of interesting test cases. However, storing the
trace of every executed test case a in prefix tree consumes large amounts of
memory and the lookup performance heavily degrades over time. Future work
should investigate the tradeoffs of this approach in depth.

Havrikov and Zeller [162] have proposed an algorithm that uses input
grammars to systematically cover the input space in a bounded fashion, which
closely relates to our approach given the similarities between input grammars
and values described by algebraic data types. However, Mutagen uses the
execution trace feedback to decide when to grow recursive grammar nodes one
step at a time, whereas the approach by Havrikov and Zeller unfolds these
steps into exhaustively testing k-grams pairs of grammar constructions.

BeDivFuzz [163] is a fuzzing approach that separates mutations into
“structure-changing” and “structure-preserving”, which closely relate to Muta-
gen’s pure and random mutant kinds, respectively. BeDivFuzz uses this distinc-
tion to search for diverse input structures (via structure-changing mutations)
and then apply structure-preserving mutations to them to produce structure-
equivalent variants. In turn, MUTAGEN uses this distinction to avoid testing
every structure-equivalent variant exhaustively.
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Zest [164] and Crowbar [32] are two fuzzing tools that mutate the bits
representing the pseudo-random choices taken by the input generators instead
of relying on specialized structure-preserving mutators. While our approach
carries the burden of synthesizing such mutators, it allows us to implement
future high-level optimizations, e.g, leveraging lazy evaluation to avoid mutating
unevaluated parts of an interesting test case.

Exhaustive Bounded Testing A different category of property-based test-
ing tools does not rely on randomness. Instead, test cases are exhaustively
enumerated and tested from smaller to larger up to a certain size bound. Feat
[29] formalizes the notion of functional enumerations. For any algebraic type,
it synthesizes a bijection between a finite prefix of the natural numbers and a
set of increasingly larger values of the input type. This bijection can be tra-
versed exhaustively or, more interestingly, randomly accessed. This allows the
user to easily generate random test cases uniformly simply by sampling nat-
ural numbers. However, test cases are enumerated based only on their type
definition, so this technique is not suitable for testing properties with sparse
preconditions expressed elsewhere. SmallCheck [68] is a Haskell tool that also
follows this approach. It progressively executes the testing properties against
all possible input test cases of up to a certain depth. Similarly, Korat [150] is a
Java tool that uses method specification predicates to automatically generate
all non-isomorphic test cases up to a given small size.

These approaches rely on pruning mechanisms to avoid generating too many
equivalent test cases before their exhaustiveness becomes impractical. LazyS-
mallCheck is a variant of SmallCheck that uses lazy evaluation to automatic-
ally prune the search space by detecting unevaluated subexpressions. In Korat,
pruning is done by instrumenting method precondition predicates and analyzing
which parts of the execution trace correspond to each evaluated subexpression.

Our tool uses exhaustiveness as a way to reliably enforce that all possible
mutants of an interesting test case are scheduled. In contrast to fully-exhaustive
tools, Mutagen relies on randomly generated test cases as a shortcut to find
initial interesting test cases without enumerating them exhaustively. Mutagen
additionally supports lazy pruning, i.e., it can detect unevaluated subexpressions
and avoid producing mutations over their corresponding positions. This can
improve the overall performance when testing non-strict properties. In our
case studies, however, the precondition of the testing properties fully evaluate
their inputs before executing the postconditions, thus we avoided including
this optimization in our evaluation. Our future work will investigate the effect
of Mutagen’s lazy pruning against non-strict testing properties.

9 Conclusions

We presented Mutagen, a coverage-guided, property-based testing tool that
extends the original CGPT approach with an exhaustive mutation mechanism
that generates every possible mutant for each interesting test case, scheduling
them to be tested exactly once.
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Our experimental results indicate that Mutagen outperforms the simpler
CGPT approach implemented in FuzzChick in terms of both failure rate and
tests until first failure. Moreover, we show how our tool can be applied in a real-
world testing scenario, where it quickly discovers 15 planted and 3 previously
unknown bugs.
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